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Introduction
Loss of soil organic carbon (SOC) is known to accelerate 
climate warming, whereas store of more organic carbon 
into soils can help mitigate climate change. Microbial 
carbon use efficiency (CUE) is defined as the ratio of 
carbon consumed by microorganisms for their own 
growth to the sum of carbon consumed for both growth 
and respiration (Tao et al. 2023; Fig. 1), which is related 
to both carbon fixation and loss. Increasing studies pro-
pose that minor changes in soil microbial CUE have sig-
nificant impacts on soil carbon storage and gas emissions 
(Domeignoz-Horta et al. 2020; García-Palacios et al. 
2021; Tao et al. 2023). For example, a high soil microbial 
CUE implies more accumulation of microbial by-prod-
ucts and residues, which can increase soil carbon storage 
(Liang et al. 2017, 2019; Sokol et al. 2022). Theoretical 
analysis and empirical observations showed CUE over 
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Abstract
Background Microbial contributions to soil organic carbon formation have received increasing attention, and 
microbial carbon use efficiency is positively correlated with soil organic carbon storage.

Mainbody This work reviews the impact on microbial carbon use efficiency from six constraints, including plant 
community composition and diversity, soil pH, substrate quality, nutrient availability and stoichiometric ratios, soil 
texture and aggregates, water and thermal constraints, and external nutrient inputs. In general, the response of 
microbial carbon use efficiency showed large uncertainty to above constraints, including positive-, negative-, or non-
correlation. However, some factors are biased, more likely to promote or inhibit carbon use efficiency. For example, 
external nutrient input (N, P, K, Ca) tended to promote carbon use efficiency, while climate warming showed more 
negative influence.

Conclusion Further, overwhelming works focused on single constraint, we suggest the importance to consider the 
synergistic influence of multiple environmental variables on microbial carbon use efficiency, special for the regulation 
mechanism of biological-environmental interactions.
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a wide range of field conditions converges around 0.30 
(Sinsabaugh et al. 2013). Changes in the abiotic and biotic 
factors, however, are acknowledged to have a significant 
impact on soil microbial CUE (Duan et al. 2023; Wang et 
al. 2023a; Xu et al. 2024).

Up to date, the limited reviews on microbial CUE 
mainly focused on the methodology, comparing the 
adaptation conditions and differences of various meth-
ods (Manzoni et al. 2012; Frey et al. 2013). For example, 
each method has its own set of benefits, drawbacks, 
and application range (Adingo et al. 2021). Some review 
paper also paid attention to the impact of a certain fac-
tor, such as warming (Zhang et al. 2022a), changes in 
plant types (Zhang et al. 2023a), and biological interac-
tions in soil (Iven et al. 2023). However, the effects of the 
focused factors on microbial CUE are often multifaceted 
and unpredictable. A comprehensive analysis of multi-
ple environmental factors remains scarce (Adingo et al. 
2021). Here we emphatically discussed on the influences 
of abiotic and biotic factors on microbial CUE (Fig. 2). It 
is aimed to provide a comprehensive understanding of 
the response of microbial CUE to a changing environ-
ment, and highlights the focus to improve the prediction 
of microbial CUE.

Plant community composition and diversity
Currently, numerous studies have confirmed that plant 
species diversity significantly impacts the composition, 
activity, and biomass of soil microbial communities (Lu 

and Scheu 2021; Gottschall et al. 2022; Chen and Hu 
2024). Plants shape soil conditions (water content, nutri-
ent input) through litter and root inputs, which can pro-
mote microbial metabolism and potentially increase 
CUE (Iven et al. 2023). It indicates a positive correlation 
between plant community construction and soil CUE. 
The existence of plants has increased soil water con-
tent, thereby enhancing substrate diffusion and improv-
ing microbial CUE (Alvarez et al. 2017; Manzoni et al. 
2012; Domeignoz-Horta et al. 2020). Higher plant spe-
cies diversity and primary production increase the input 
of plant-derived carbon and nutrient content into the soil 
(Mori et al. 2020; Peng and Chen 2021). By this means, 
the resource supply for soil microbial communities is 
enhanced, promoting faster microbial growth, turnover, 
and higher CUE (Lange et al. 2015; Craig et al. 2022; 
Xiong et al. 2023). Duan et al. (2023) found that, with 
increasing tree species diversity and substrate availabil-
ity, microbial CUE was also increased. The primary suc-
cession of vegetation is also accompanied by an increase 
in community richness. A study in the Hailuogou glacier 
retreat area revealed that, with the succession of vegeta-
tion, the ratio of oligotrophic to autotrophic microorgan-
isms increased, and CUE gradually increased (Ma et al. 
2023a). Moreover, the quantity and type of compounds 
secreted by plants are specific to plant species (Man-
zoni et al. 2012). Plants can provide energy sources for 
microorganisms by secreting labile carbon compounds 
(Hartmann et al. 2009), which may increase the CUE 

Fig. 1 Soil microbial carbon use efficiency. Plants primarily input carbon into the soil through root exudates and leaf litter. This litter serves as a carbon 
source for soil microorganisms, with a portion of the carbon released into the atmosphere through respiratory metabolism. Another portion is assimilated 
into microbial biomass. Upon death, these microorganisms form microbial residues, which contribute to the accumulation of soil organic carbon. Only a 
small amount of carbon is consumed for the secretion of extracellular enzymes and metabolic products (negligible). Therefore, microbial carbon use ef-
ficiency refers to the ratio of carbon consumed by microorganisms for their own growth to the sum of carbon consumed for both growth and respiration
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of free-living microorganisms under carbon limitation. 
Therefore, in general, diverse plant systems have higher 
microbial biomass and lower respiration rates compared 
to monocultures (Anderson and Domsch 2010).

Moreover, plants can compete with microorganisms 
and affect microbial CUE. For example, the abundance 
of nitrate-reducing bacteria decreases with changes 
in plant nitrogen use efficiency (Moreau et al. 2015). 
Through indirect competition, plants may select the pro-
liferation of fast-growing microbes or select for microbes 
with high investments in resource acquisition. Thus, the 
community-level CUE is reduced, but such an effect 

may additionally depend on the plant species involved 
and environmental context of the rhizosphere (Iven et 
al. 2023). Further, some plants even produce secondary 
metabolites (such as jasmonic acid and salicylic acid) 
(Watson et al. 2015) or utilize toxic compounds (such 
as indole glucosinolates) (Anthony et al. 2020) to inhibit 
related microorganisms, potentially reducing CUE. Con-
trary to the above view, Prommer et al. (2020) found in 
a diversity experiment in temperate grasslands that plant 
species richness had no significant effect on microbial 
CUE. Cascading effects of biotic interactions are widely 
known to introduce apparent stochasticity to microbial 

Fig. 2 Response of Soil Microbial Carbon Use Efficiency (CUE) to Different Factors. Microorganisms absorb carbon from the soil, with part of it used for 
growth(G) and the other part for respiration(R). The inner circle represents the proportion of carbon used for growth in the total carbon absorbed by 
microorganisms, which is called microbial carbon use efficiency (CUE). Six key factors are covered, starting from the top and proceeding clockwise: plant 
community composition and diversity; soil pH; substrate quality, nutrient availability and stoichiometric ratios (C: E represents the ratio of carbon (C) 
content to essential element (E) content in the substrate); soil texture (sand, loam, clay) and aggregates; water and thermal condition limitations (climate 
warming, drought, and humidity); external nutrient inputs (K, N, Ca, P)
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communities, which may be difficult to predict (Powell 
et al., 2016). When examining the interactions between 
microorganisms and plants, it’s important to analyze spe-
cific conditions in detail.

Soil pH value
The soil pH value is a major factor influencing microbial 
CUE (Wu et al. 2023, 2024; Liu et al. 2024). Two mecha-
nisms are now proposed influencing the microbial com-
munity composition and activity. Firstly, under low pH 
conditions, bacterial growth is suppressed, leading to 
decrease organic matter availability (Silva-Sánchez et al. 
2019). Less resources resulted in a decreased CUE, indi-
cating a close correlation between pH and CUE (Silva-
Sánchez et al. 2019). Secondly, pH impacts microbial 
activity through cellular stress. For example, under low 
soil pH conditions, the solubility of toxic metals such as 
Al3+ increases, causing cellular stress and subsequently 
reducing microbial CUE (Wang et al. 2023a; Jones et al. 
2019). Additionally, microorganisms in low pH environ-
ments may need to expend more energy to maintain pH 
balance, reducing the energy available for growth and 
thus decreasing microbial CUE (Wu et al. 2023). How-
ever, it was also found that the relationship between 
CUE and soil pH is not a simple positive linear one. With 
lime addition to agricultural soil, the overall relationship 
between CUE and pH followed a U-shaped (i.e., qua-
dratic) curve (Schroeder et al. 2024). This suggested that 
CUE may reach its highest levels under acidic or alkaline 
pH conditions and be lowest under near-neutral soil con-
ditions. Sinsabaugh et al. (2016) discovered a significant 
CUE minimum at a pH of 5.4 in a meta-analysis of global 
soils, which attributed to changes in the bacterial to fun-
gal ratio.

Substrate quality, nutrient availability, and stoichiometric 
ratios
Numerous studies have demonstrated that the quality 
of carbon substrates, nutrient availability, and stoichio-
metric ratios regulate microbial CUE (Sinsabaugh et al. 
2013; Mooshammer et al. 2014; Li et al. 2021). Complex 
organic compounds typically have lower carbon substrate 
quality due to their diverse types of chemical bonds and 
complex structures, requiring more enzymes for decom-
position (Sinsabaugh et al. 2013). The incorporation of 
such low-quality carbon compounds into microbial bio-
mass leads to microorganisms allocating more energy 
for enzyme production, reducing the energy available for 
growth and thus decreasing CUE values (Allison 2014). 
Such as highly oxidized chemicals like oxalic acid are to 
be integrated into biomass (Hervé et al. 2016). They nec-
essarily consume significant amounts of reducing power 
(NADH), while generating a relatively minuscule amount 
of energy compared to glucose (Hervé et al. 2016). As a 

result, on oxalic acid or phenolic substances, the CUE of 
soil microbial communities is significantly smaller than 
on glucose (Frey et al. 2013). The degree of C reduc-
tion of the substrate (γS) is another important factor 
that affects the CUE of soil microorganisms. The γS of 
the main substrates utilized by microorganisms is usu-
ally within the range of 3–5, which is equivalent to the C 
reduction degree (γB ≈ 4.2) of soil microorganisms (Roels 
et al. 1980). When the γS of the substrate is less than 4.2, 
the microbial CUE is mainly limited by the reduction 
degree from the substrat. When the γS of the substrate 
is more than 4.2, the microbial CUE is higher (Roels et 
al., 1980; Gommers et al. 1988). It is worth noting that 
the responses of different microbial communities to 
substrate carbon quality were different. Compared with 
bacteria exposed to a carbon-rich environment, bacteria 
exposed to a carbon-limited environment can metabolize 
a wider range of substrates (von Stockar et al., 2013).

Substrate quality have a significant relative to soil 
depth. Since the surface soil receives more unstable car-
bon from surface litter and roots compared to deeper 
soil layers, this carbon is more readily available for effi-
cient utilization (Zhang et al. 2023b). Deeper soil layers 
dominated by complex organic compounds lack readily 
available organic carbon in the form of plant debris and 
rhizodeposits. This suggesting that CUE may decrease 
with increasing soil depth. On one hand, under such con-
ditions, it may reduce the decomposition of organic car-
bon in deeper soil layers (Agren and Bosatta 1987). On 
the other hand, as soil depth increases, the availability 
and quality of soil C substrates decrease. As organic car-
bon concentrations decrease, the benefits of organic car-
bon decomposition for microorganisms become smaller. 
The effect of soil depth on microbial CUE may be ampli-
fied by changes in organic matter quality, especially for 
compounds that require extensive enzymatic reactions 
for degradation (Agren and Bosatta 1987). Even if the 
microbial community possesses all the enzymes decom-
posing organic compounds, microorganisms must invest 
a significant amount of C and N in producing extracel-
lular enzymes, thereby reducing microbial CUE. (Agren 
and Bosatta 1987; Manzoni and Porporato 2009).  Zhang 
et al. (2023b) discovered that CUE decreased as soil 
depth in alpine grasslands on the Tibetan Plateau, micro-
bial CUE showed significant negative correlation with 
microbial biomass-specific hydrolytic enzyme activity.

Under nutrient-limited conditions, microbial CUE 
decreases accordingly. Microorganisms adapt to nutrient-
limited environments by altering their metabolic strat-
egies with more energy in producing enzymes related 
to nutrient acquisition, which results in excess carbon 
overflow for respiration (Manzoni et al. 2012; Geyer et 
al. 2016; Mehnaz et al. 2019). Soil CUE decreased sig-
nificantly due to phosphorus limitation (Mganga et al., 
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2022). High nutrient availability (simple SOM chemi-
cal structure and weak mineral-organic associations) is 
accompanied by high microbial CUE (Duan et al. 2023). 
Stoichiometric studies have shown that the C: N ratio can 
also significantly influence microbial CUE (Manzoni et al. 
2012; Sinsabaugh et al. 2013; Takriti et al. 2018). At envi-
ronments with a high C: N ratio (> 10), microorganisms 
consume excess carbon through overflow respiration or 
producing other metabolites (such as proteins), thereby 
reducing CUE (Manzoni et al. 2012).

Soil texture and aggregates
Soil texture has an impact on soil water effects, with 
coarser-textured soils having lower water content com-
pared to finer-textured soils. In theory, Microorganisms 
in coarser-textured soils may be more prone to diffusion 
limitations associated with low water content, resulting 
lower CUE (Butcher et al. 2020). However, contrary to 
expectations, the content of clay was negatively corre-
lated with the content of CUE (Oliver et al. 2021). Studies 
have found that sandy soils have higher microbial CUE 
and lower biomass turnover times compared to clay soils 
(Li et al. 2021; Pei et al. 2021). A reasonable explanation 
is that clay content strongly affects the diffusivity of the 
matrix and the accessibility of microorganisms (Krull et 
al. 2003). Substrate are stabilized by interactions with 
clay mineral surfaces. (Krull et al. 2003; Li et al. 2020a). 
It is mean that higher clay content can better bind with 
the substrate, reducing its diffusivity. Additionally, higher 
clay content also has reduced the accessibility of sub-
strates to microorganisms by physically protection (Li et 
al. 2020b).

Soil aggregates directly affect microbial growth and 
activities by providing diverse environments for micro-
organisms (Hattori, 1988). In return, microorganisms are 
usually involved in the formation of aggregates by binding 
between particles (Lehmann, J. et al. 2015). The reason 
that macroaggregates have a higher CUE than microag-
gregates is that microaggregates have higher carbon sta-
bility, making them more difficult for microorganisms 
to utilize. (Bimüller et al. 2016; Najera et al. 2020). The 
SOM of microaggregates is formed by primary particles 
of plant and microbial debris combined with humus sub-
stances or polysaccharide polymers. Humus substances 
or polysaccharide polymers can better protect organic 
matter from decomposition (Kimura et al. 2012; Denef 
et al. 2007). The low degradability of SOC in microaggre-
gates reduces microbial mineralization (Tian et al. 2016), 
which may result in lower CUE. This conjecture has also 
been proved (Zhao et al. 2022; Li et al. 2024). Diverse-
ness in soil aggregate structure also imply complex nutri-
ent supplies, leading to in organic matter degradability 
and microbial CUE (Mo et al. 2021). Macroaggregates 
usually represent an important site of nutrient (e.g., N, 

P) accumulation (Green et al. 2005; Fonte et al. 2014). 
SOM has been proven to be more efficiently decomposed 
in N- and P-modified soils (Li et al., 2014). Therefore, 
compared with microaggregates, the SOM of macroag-
gregates appears to have higher degradability, leading to 
larger microbial CUE (Tian et al. 2016).

Constraints of water and thermal conditions
The constraints of soil water and thermal conditions have 
significant impacts on soil microbial CUE, particularly in 
the context of climate warming and changes in soil mois-
ture (Classen et al. 2015; Tian et al. 2023; Liu et al. 2024). 
Climate warming lead to an increase in temperature, 
temperature increases often trigger other chain reac-
tions, and their impact on CUE is multifaceted. Higher 
temperature, on one hand, can lead to an increase in CUE 
and accelerate SOM decomposition. A five-year experi-
ment found that warming trigger fundamental changes in 
the physiology of microbial communities in tropical for-
est soil, increasing CUE (Nottingham et al. 2019). On a 
global scale, Ye et al. (2019) incorporated microbial CUE 
and the relationship between mean annual temperature 
(MAT) and enzyme kinetics-MAT into a SOC model. By 
datasets of measured respiration (including 110 dryland 
soils distributed globally and two mainlands to global-
scale cross-biome datasets), this work found a positive 
CUE-MAT relationship. In other words, microbial CUE 
tends to increase with increasing MAT, possibly because 
the availability of plant carbon inputs is generally higher 
in warmer climates (Bardgett et al. 2008).

On the other hand, some studies have found that CUE 
is resistant to warming, because of thermal adaptability 
of microorganisms. Simon et al. (2020) conducted mea-
surements of soil microbial growth, CUE, and respiration 
under three distinct temperature and atmospheric CO2 
levels, as well as summer drought conditions. The authors 
found the individual and combined effects of climate 
change treatments on microbial growth and respiration 
rate were significant. But microbial CUE at the com-
munity level remains almost stable regardless of treat-
ment or season. Similarly, study have found that the CUE 
of temperate forest soil in the 0–40  cm depth did not 
change significantly in response to warming (Spohn et al. 
2016a). This situation is also found in a 3.3-year warming 
experiment with a 4 °C increase in the 0–100 cm depth of 
alpine grassland soil on the Qinghai-Tibet Plateau (Zhang 
et al. 2023b) or a 2-year warming experiment with a 4 °C 
increase in the 0–100  cm depth of tropical forest soil 
(Nottingham et al. 2020). The response of microbial CUE 
to warming also varies at different soil depths, which 
may be due to the difference in substrate structure and 
microbial community. For a short-term (110-day) experi-
ment on soil warming in alpine grassland, it was revealed 
that nitrogen limitation induced by warming reduced 
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microbial CUE in the subsoil (30–40 cm), but not for the 
topsoil (0–10 cm) (Zhu et al. 2021). In another 4.5-year 
soil warming experiment with an increase of 4  °C, CUE 
was found to remain unchanged in the 0–60  cm depth, 
but decreased below 60 cm depth (Dove et al. 2021). In 
summary, the effect of climate warming on soil microbial 
CUE remains uncertain with complex enviroment of soil 
depth.

CUE is frequently reported to be reduced as the tem-
perature increased (Frey et al. 2013; Rivkin and Legendre 
2001; Wetterstedt and Agren 2011). The rate of mainte-
nance respiration usually increases faster than the rate 
of new microbial biomass production under warming 
(Frey et al. 2013). Through a microbial-enzyme model to 
simulate the soil carbon response to a 5  °C temperature 
rise, it was found that CUE decreased under warming 
conditions (Allison et al. 2010). On a longer timescale, a 
26-year soil warming experiment also revealed a decrease 
in CUE due to climate warming (Melillo et al. 2017). Shi 
et al. (2023) found through a 10-year forest soil warming 
experiment that soil warming led to increased non-bio-
logical adsorption of phosphorus. This condition lowered 
the availability of soil phosphorus, ultimately resulting 
in phosphorus limitation. To obtain the necessary phos-
phorus for growth, microorganisms increased the secre-
tion of phosphatases, thereby reducing the carbon used 
for growth. Li et al. (2018) combined a microbial enzyme 
model with 22 years of carbon cycle measurements in 
Harvard Forest, using a probabilistic inversion method. 
They found that the increased temperature reduced CUE, 
and soil warming increased the temperature sensitiv-
ity of CUE. Notably, in an 11-year warming experiment, 
traditional tillage topsoil showed a 77% decrease in CUE 
due to warming, while CUE under conservation tillage 
increased by 29.1% (Wang et al. 2022). Microorganisms 
were regarded to effectively utilized richer and higher-
quality substrates to build biomass during conservation 
tillage (Wang et al. 2022). In terms of most studies, the 
response of CUE to warming tends to decrease. However, 
considering the changes in microbial communities, the 
increase in carbon input, and the thermal adaptability of 
microorganisms that may be caused by warming, its spe-
cific response requires further analyzed.

Soil moisture regulates microbial activity through two 
primary physical mechanisms. The first one is the dry-
ing effect caused by low water potential. The decrease in 
extracellular water potential requires the accumulation of 
compatible solutes within microbial cells to balance the 
extracellular and intracellular water potentials (Rath and 
Rousk 2015; Rath et al. 2016). The second is the substrate 
diffusion limitation due to low water content (Herron et 
al. 2009). Substrate diffusion limitation is a physical con-
straint on soil microbial communities, limiting access 
of microbial communities to substrates (Weerts et al. 

2001). But the influence of soil moisture on microbial 
CUE still needs to be specifically discussed. Study have 
found that drought conditions increased the fungal-to-
bacterial ratio, thereby enhancing microbial CUE (Sun et 
al. 2022; Butcher et al. 2020). Similarly, in a short-term 
water stress event, CUE increases as osmoregulatory sol-
utes and storage compounds are accumulated (Uhlırova, 
et al. 2005; Herron et al. 2009). However, in the long-
term water stress event, CUE is reduced by repeated 
stress events, as the C costs for water stress responses 
become apparent (Tiemann and Billings 2011). Microor-
ganisms also exhibit different responses under different 
humidity conditions, which further affect microbial CUE. 
Only under high humidity conditions, microbial spe-
cies exhibit complementary effects by cross-feed shared 
resources (e.g., one species can utilize degradation prod-
ucts from neighboring species as substrates for growth). 
These effects enable more efficient growth, which may 
benefit microbial CUE (Domeignoz-Horta et al. 2020). 
In conclusion, when the interaction of microorganisms is 
not considered, short-term drought tends to reduce CUE, 
but the effect may be opposite under long-term drought.

External nutrient input
Most studies have found that under the condition of 
applying only N or adding N, P, and K simultaneously, 
CUE tends to increase (Poeplau et al. 2019; Zhang et al. 
2022; Xu et al. 2024). The increase in CUE under N addi-
tion conditions can be attributed to several factors. First, 
it inhibits microbial respiration, which leads to an imbal-
ance in the C: N ratio. This imbalance, in turn, enhances 
nitrogen utilization efficiency and reduces carbon 
investment in the production of extracellular enzymes 
for nitrogen acquisition. (Malik et al. 2020; Wang et al. 
2023b; Yang et al. 2023). Second, some studies propose 
that the increase in CUE is not driven by stoichiometric 
imbalance. Instead, a decrease in the mineral protection 
of SOC increases the accessibility of microorganisms to 
carbon. (Feng et al. 2022). N induction led to changes in 
fungal composition, resulting in the production of more 
oxalic acid and causing changes in plant characteris-
tics and community composition. Both of these aspects 
weakened mineral protection (Feng et al. 2022), organic 
matter is decomposed into smaller and more easily 
degradable molecular compounds, which are more con-
ducive to microbial absorption and assimilation (Wal-
lenstein and Weintraub 2008). Nitrogen-induced stress, 
such as soil acidification (Treseder 2008), may also trig-
ger energy-intensive metabolic pathways or even directly 
cause microbial death (Jones et al. 2019; Horn et al. 
2021), thus affecting microbial CUE.

Ma et al. (2023b) conducted a study examining the 
microbial CUE of soil layers after nitrogen fertilizer 
application. In contrast to previous findings, the authors 
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observed that both short-term (2 years) and long-term 
(10 years) nitrogen addition did not significantly affect 
microbial CUE. It attributed to the slight increase in car-
bon allocation to microbial biomass production, which 
was insufficient to significantly change CUE (Ma et al. 
2023b). In a similar study, Jiang et al. (2024) found that 
nitrogen fertilizer application in tropical forests did not 
affect the CUE of surface soil (0–10  cm). However, the 
CUE in deep soil (60–80  cm) increased by 25.5%, likely 
due to the decreased ratio of fungi to bacteria and the 
C: N ratio. In a 6-year nitrogen addition experiment, it 
was also found that the decrease in the ratio of fungi to 
bacteria in temperate grasslands led to a decrease in CUE 
(Riggs and Hobbie 2016).

Long-term fertilization (N, P, K) conditions enhanced 
microbial CUE (Li et al. 2021). Adding nitrogen and 
phosphorus to the soil likely reduces metabolic costs for 
microorganisms to acquire nutrients. It also eliminates 
the need for additional enzymes and enables more car-
bon to be used for growth, ultimately enhancing CUE 
(Manzoni et al. 2012; Spohn et al. 2016b). Xu et al. (2024) 
found that the microbial CUE in soil treated with min-
eral fertilizer (N, P, K) alone increased by 22% compared 
to unfertilized soil. Additionally, the addition of Ca can 
also influence soil microbial CUE. Ca addition, on one 
hand, can promote bacteria production and affect the 
microbial community. On the other hand, it enhances 
the stability of microbial by-products by increasing the 
binding of litter and microbial by-products, resulting in 
a 45% increase in CUE (Shabtai et al. 2023). In general, 
if the input of external nutrients does not significantly 
change the ratio of fungi to bacteria in the soil, it tends to 
increase microbial CUE.

Prospects
From a research perspective on soil microbial CUE, most 
current studies concentrate on single-site, single-factor 
impacts. These studies primarily examine changes in 
fungal and bacterial functional groups, carbon substrate 
quality, nutritional limitations, as well as the impacts of 
carbon, nitrogen, and phosphorus addition, organic fer-
tilizer application, temperature rise, soil pH, moisture, 
aggregate size, and plant community composition and 
changes (Fig. 2). Given the complex interactions between 
soil, plants, and microorganisms, future research should 
pay more attention to the combined effects of multiple 
factors on soil microbial CUE.

In consideration of soil layers observed for soil micro-
bial CUE, many studies concentrate primarily on the 
0–15 (20) cm surface soil layer, overlooking the CUE at 
deeper soil depths. Moreover, further research should 
encompass other aspects, such as temperature sensitivity 
and substrate quality, across different soil depths. A com-
prehensive investigation is warranted to elucidate how 

the soil microbial CUE varies with the multi-factorial 
changes across soil profile.

As regards the types of ecosystems observed for soil 
microbial CUE, present studies cover diverse types of 
ecosystems. Study places significant focus on the com-
parison and analysis among different ecosystems, includ-
ing farmland, grassland, shrubland and forest but blue 
carbon habitats, also, deserve more attention. Currently, 
the time range of studies tends to be short-term. Addi-
tionally, in compared to local study, comprehensive focus 
on a global scale is still limited, but necessary.
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