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Abstract 

Purpose Farming practices on farmlands aim to improve nutrients in the fields or crops, soil quality and functions, as 
well as boost and sustain crop yield; however, the effect of loss of ecological diversity and degradation have impacted 
ecosystem functions. The beneficial rhizosphere-microorganism network and crop rotation may enhance a stable 
ecosystem. The use of next-generation sequencing technique will help characterize the entire bacterial species in the 
sunflower rhizosphere compared with the nearby bulk soils. We investigated the potential of the bacterial community 
structure of sunflower rhizosphere and bulk soils cultivated under different agricultural practices at two geographical 
locations in the North West Province of South Africa.

Methods DNA was extracted from rhizosphere and bulk soils associated with sunflower plants from the crop rotation 
(rhizosphere soils from Lichtenburg (LTR) and bulk soils from Lichtenburg (LTB) and mono-cropping (rhizosphere soils 
from Krayburg (KRPR) and bulk soils from Krayburg (KRPB) sites, and sequenced employing 16S amplicon sequencing. 
Bioinformatics tools were used to analyse the sequenced dataset.

Results Proteobacteria and Planctomycetes dominated the rhizosphere, while Firmicutes and Actinobacteria were 
predominant in bulk soils. Significant differences in bacterial structure at phyla and family levels and predicted func-
tional categories between soils (P < 0.05) across the sites were revealed. The effect of physicochemical parameters was 
observed to influence bacterial dispersal across the sites.

Conclusion This study provides information on the predominant bacterial community structure in sunflower soils 
and their predictive functional attributes at the growing stage, which suggests their future study for imminent crop 
production and management for enhanced agricultural yields.

Keywords Bacterial diversity, Helianthus annuus, Soil metagenomics, Sustainable agriculture, 16S rRNA gene 
sequencing

Introduction
Comprehending the rhizosphere’s geographical distri-
bution of microbial communities has opened up several 
possibilities for exploiting their agricultural potential. 
Various microbial communities inhabit the rhizosphere, 

each with the ability to induce maximal adaptive 
responses in the plant via specific metabolic pathways. 
The rhizosphere is the area near the plant’s roots where 
exudates containing various metabolites are discharged, 
as well as a variety of microorganisms (Agomoh et  al. 
2020; Ai et al. 2012). Roots are engaged in the release of 
exudates of various chemical components into the rhizo-
sphere, in addition to providing nutrients and anchoring 
the entire plant. Through the secreted root exudates, the 
rhizosphere plays an important role in the modification 
of its microbiome component.
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Plant-microbial interactions are complicated and can 
enhance plant growth and development (Igiehon and 
Babalola 2018; Berlanas et  al. 2019). Bacteria are the 
predominant microorganisms in the rhizosphere and 
are indicators of soil quality, health and fertility due 
to their responses to biotic and abiotic pressures (Igie-
hon et  al. 2019). The actions of bacteria are dynamic 
because they accelerate most biogeochemical pro-
cesses, thus inducing mineral nutrient availability in 
soil (Nwachukwu and Babalola 2021). Bacterial com-
munities in the rhizosphere can resist pathogens and 
stimulate tolerance to abiotic stressors, hence promot-
ing plant growth, health and yield (Li et al. 2020; Meena 
et  al. 2014). Bacterial communities that colonize the 
rhizosphere could be valuable, however, most do not 
affect plant health (Nwachukwu et  al. 2021; Maquia 
et al. 2020).

Although, various researchers have explored the micro-
biome of oil food crops such as sunflower root microbi-
ome, studies on the impact of plants on microorganisms 
are still ongoing; thus, necessitating this study. The sun-
flower (Helianthus annuus), a major oilseed crop in mod-
ern agriculture, is used for various food and industrial 
purposes (Majeed et  al. 2018). Owing to its growing 
agricultural importance, some continents, such as South 
America, Europe, and Africa especially, South Africa, 
have exploited the potential for its usage (Pandey et  al. 
2013; Majeed et al. 2018).

Reports on the plant growth-promoting bacteria asso-
ciated with sunflower plants for improved productivity in 
South Africa are limited, perhaps due to the inadequate 
studies on sunflower plants using the next-generation 
sequencing techniques. Hence, it is imperative to deter-
mine bacterial community structures that are resident in 
the sunflower rhizosphere soils using the 16S rRNA gene 
and their associated predictive functions (Yadav et  al. 
2017; Lu et al. 2020). Given this, to distinguish the effects 
of plants, we evaluated bacterial communities in the 
rhizopheric soil of sunflower and the corresponding bulk 
soils. Furthermore, we explored the dissimilarities in the 
associated predicted functional compositions of the soils.

We postulated that the soil properties and agricultural 
practices, such as the use of chemical fertilizer, cropping 
type (mono-cropping and mixed cropping) and organic 
manure would influence the structure and metabolic 
potential of sunflower rhizosphere bacterial communi-
ties compared to the bulk soil. A good knowledge of the 
predicted metabolic pathways of bacterial communities 
in the rhizosphere region is essential since functional 
heterogeneity is a delicate signal of the quality elements 
of the soil management. It also speeds up the amplifi-
cation of bacterial community functions as a compre-
hension of biochemical and molecular components in 

the rhizosphere zone and controls particular bacterial 
enhancement. 

Materials and methods
Site location, sampling, and climatic conditions
In March 2020, the rhizosphere and bulk replicate soil 
samples from the two commercial sunflower fields (at the 
growing stage) of different cultivars, PAN 7160 CLP and 
PAN 7011 Pannar, were collected from Lichtenburg (LT) 
(S26°4′31.266′′ E25°58′44.442) and Krayburg/Kraaipan 
(KRP) (S26°17′24.186′′ E25°13′33.258), North West Prov-
ince, South Africa. A total of 12 samples each for the 
rhizosphere and bulk soil were collected from 4 points 
of sunflower plant and 15–20  cm depth from the two 
farms and pooled into labelled zip lock bags and were 
homogenized to get a composite sample as described 
by (Oberholster et al. 2018). The soils were immediately 
transported to the Microbial Biotechnology Research 
Laboratory, North-West University, South Africa. The 
soils were placed separately, sieved, and stored in zip lock 
bags in the dark at -80  °C for DNA extraction and high 
throughput sequencing.

Usually, North West Province has a summer tem-
perature ranging from 17 °C to 31 °C and a winter tem-
perature ranging from 3 °C to 21 °C. The annual rainfall 
ranges between 300 and 600 mm. According to the farm 
owner, the farmland in Lichtenburg has been cultivated 
for over 40  years. Sunflower has been rotationally cul-
tivated with other agricultural crops, such as soybean 
and maize. Water supply is mainly by rainfall during the 
summer while irrigation during winter. The main farm 
activities are clearing, tilling, plowing, and ridging. Also, 
the application of chemical fertilizers (NPK 15:8:4), pre-
emergence and post-emergence herbicides (Metagon 
Gold and Judo 50EC) the soil before and after planting. 
Foliar insecticide spray (Max-Foliar) was applied to the 
leaves after plant germination. In Krayburg, the farm-
yard size is 24.711 Acres with 24.711 Acres of sunflower 
plantation landscape coverage. Maize was the only crop 
previously cultivated on the farmland. Soil amendments 
include the application of urea and organic manure.

Soil physicochemical analysis
The analyses of rhizosphere and bulk soil samples for 
physicochemical parameters were performed using 
standard procedures, and 30  g of pulverized and sieved 
soil was taken from each sample. The soil pH in distilled 
water was measured using a pH meter (ratio 1:2.5, soil to 
water), the organic matter (OM) present in the soils was 
determined using the Walkley–Black method (Walak-
ley and Black 1934), while phosphorus (P) was extracted 
from the samples according to the method of (Bray and 
Kurtz  1945). Potassium (K) was evaluated using 1  M 
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acetate at pH 7.0 (Gutierrez Boem et al. 2011). The soil’s 
total carbon (C) and total nitrogen (N) were determined 
using the dry combusting technique as described by 
(Craft et al. 1991). The nitrate (N–NO3) and ammonium-
N (N–NH4) were determined using the KCl extraction 
method by (Nelson et al. 1996).

DNA extraction and 16S rRNA amplicon sequencing
The DNA was extracted from 5 g of each sieved rhizos-
phere and bulk soil samples using a Zymo DNA isolation 
kit (Zymo Research, Irvine, USA) following the manu-
facturer’s instructions. All the data are products of 16S 
amplicon sequencing at the Molecular Research Labora-
tory (MR DNA, Shallowater, TX. USA). The polymerase 
chain reactions (PCRs) were performed in a single-step 
PCR using the HotStarTaq Plus Master Mix Kit (Qiagen, 
USA) primer pairs 515F (5′- AAT GAT ACG GCG ACC 
ACC ACC GAG ATC TAC  AC TAT GGT AATT GT GTG 
CCA GCMGCC GCG  GTAA-3′) and 806R (5′-CAA GCA 
GAA GAC GGC ATA C GAGAT TCC CTT GTC TCC AGT 
CAG TCAG CC GGA CTACHVGGG TWT CTAAT-3′).

The PCR products from the DNA samples were quan-
tified using PicoGreen dsDNA assay. The samples were 
pooled together in an equimolar concentration. Then, 
calibrated Ampure XP beads (Agencourt Bioscience Cor-
poration, MA, USA) was used for purification. The Illu-
mina DNA library was prepared from the pooled and 
purified PCR products. Sequencing was performed on 
an Illumina MiSeq 2000 using a paired-end approach to 
obtain 312 bp paired-ends reads.

The sequence read processing was performed using 
Quantitative Insights Into Microbial Ecology (QIIME 
2) 16S pipeline (version 2020.11) (Caporaso et  al. 2010) 
performed on Nephele microbial bioinformatics platform 
(version 1.8) (https:// nephe le. niaid. nih. gov/) (Weber 
et al. 2018). Preprocessing steps involve read pair joining 
using default parameters (a minimum overlap of 10, and 
percentage maximum difference of 25), an average Phred 
score of ≤ 20 was removed, while chimeras were removed 
using VSEARCH (Edgar et al. 2011), while clustering was 
done using Open Reference Method and SILVA 99 ver-
sion 132 (Wang et al. 2007). SILVA version 132 was used 
to assign taxa, with a sequence similarity of 0.99, and 
then chimeric sequences, including mitochondria, single-
ton, and chloroplast reads were eliminated.

Statistical analysis
Microsoft excel sheet was used to derive the mean and 
standard errors of the soil physicochemical properties. 
Soil physicochemical data were transferred to the Statis-
tical Package for the Social Sciences (SPSS), where one-
way analysis of variance (ANOVA) and Duncan multiple 
tests were performed. The relative abundance graph of 

the bacterial community between the sunflower rhizos-
phere and bulk soil was plotted using the Shinyheatmap 
(version 0.12.2) online tool (www1. heatm apper. ca/ expre 
ssion/) (Khomtchouk et  al. 2017). The alpha diversity 
(diversity within the samples) of the bacterial commu-
nity structure across each sampling sites, diversity indi-
ces (Simpson, Evenness, and Shannon_H) and bacterial 
richness were assessed using a Kruskal–Wallis test in the 
paleontological statistics software package (PAST version 
4.0) (Hammer et al. 2001). These indices were also com-
pared the rhizosphere and bulk soils.

The beta diversity was determined using the principal 
coordinate analysis (PCoA) on a Bray–Curtis dissimilar-
ity matrix and the one-way analysis of similarities (ANO-
SIM) was used to determine the variances in community 
structure and composition among the sites (Clarke and 
Green 1988). Principal component analysis (PCA) using 
the Euclidean matrix was employed to identify the dis-
tribution of bacteria across the sunflower sites. Also, 
PCA was used to evaluate the environmental variables 
that best described the composition of the obtained bac-
teria and we assessed the possible correlations between 
bacterial communities and the measured environmental 
variables.

We employed a forward selection of environmental 
variables to conduct a significance test. The PCoA and 
PCA plots were designed using CANOCO version 5 
(Microcomputer Power, Ithaca, NY, USA) software. The 
predictive functional annotation of the bacterial catego-
ries in the sampling site was assessed on Phylogenetic 
Investigation of Communities by Reconstruction of 
Unobserved States (PICRUSt); the predicted functional 
classifications at the different levels (i.e. first, second, and 
third) were obtained.

Results
Physical and chemical analysis of sunflower rhizosphere 
and bulk soils
Soil analysis showed that OM, N-NH4 and total N were 
higher in rhizosphere soils from Lichtenburg (LTR) than 
in rhizosphere soils from Krayburg (KRPR) as shown in 
Table 1. We observed that the pH values of the soil sam-
ples from the LT site had low pH values (acidic) com-
pared to the pH values of the soils from the KRP site.

Sequence data and beta analyses of the rhizosphere 
and bulk soil samples
The taxonomic groups were assigned using the SILVA 
reference database. The total number of uploaded 
sequences varied between samples and across the 
sites. Sequence base pair count of 87,446 (LTR), 80,404 
(KRPR), 100,988 (bulk soils from Lichtenburg- LTB) 

https://nephele.niaid.nih
https://www1.heatmapper.ca/expression/
https://www1.heatmapper.ca/expression/
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and 74,956 (bulk soils from Krayburg- KRPB) sequence 
reads for the soil samples. Consequently, quality control 
(QC) check revealed the sequence read count for LTR—
47,471, LTB—9,628, KRPR- 16,621, and KRPB – 19,050 
between the samples and across the sites. Sequences 
were clustered at 97% similarity according to their con-
nection to one another by Operational Taxonomic Units 
(OTUs) and the different OTU abundances in all sam-
ples were obtained based on the similarity threshold.The 
PCoA graph of the bacterial diversity at the phyla level 
in the soil samples across the sites is presented in Fig. 1, 
which indicated that samples from LTB differ signifi-
cantly from LTR, KRPR, and KRPB samples. The vector 
length of the PCA graph revealed the most dominant 
bacterial phyla in each soil niche. Specifically, this is the 
bacterial phyla having the longest vector length of PCA. 
The vector length was used as an indicator, notably, in 
LTR Acidobacteria, Planctomycetes, Chloroflexi, Arma-
timonadetes, Gemmatimonadetes and Cyanobacteria 
dominated, whereas Actinobacteria, Elusimicrobia and 
Nitrospirae were predominant in LTB, whereas Proteo-
bacteria, Verrucomicrobia, Bacteroidetes and unclas-
sified sequences were prevalent in KRP, and the main 
bacterial phyla in KRPB were Spirochaetes and unclas-
sified bacteria (Fig.  2). The bacterial phyla selected for 
PCoA and PCA plots were established on the level of 
significance. Analysis of similarities (ANOSIM) revealed 
that the differences in the beta diversity of the bacte-
rial communities across the sites differed significantly 
(P = 0.01 and R = 0.58).

Structural composition of the bacterial community
At the phylum level, the dominant rhizospheric bacte-
ria in LTR were Proteobacteria, Planctomycetes, Gem-
matimonadetes, Acidobacteria, Armatimonadetes, and 
Cyanobacteria, while Actinobacteria, Nitrospirae and 
Elusimicrobia predominated LTB. Interestingly, unclassi-
fied bacteria dominated KRPR, while Firmicutes, Bateroi-
detes, Verrucomicrobia and unclassified sequences, and 
Spirochaetes were abundant in KRPB (Fig. 3).

At the family level (Fig S1), Moraxellaceae, Caulobac-
teraceae, Geodermatophilaceae, Solirubrobacteraceae, 
Streptomycetaceae, Acetabacteraceae, Bradrhizobiaceae, 
Comamonadaceae, Micromonosporaceae, and Chitin-
ophagaceae were predominant in LTR. Unknown bacte-
ria, Micrococcaceae, Nocardioidaceae, Rhodospirillaceae, 
Pseudonocardiaceae, Sphingomonadaceae, Thermomono-
sporaceae, and Microbacteriaceae were dominant in LTB. 
Pseudomonadaceae, Streptomycetaceae, Paenibacillaceae 
and Planococcaceae influenced KRPR, while Baccilaceae, 
Rubrobacteraceae, Oxalobacteraceae, and Clostridiaceae 
dominated KRPB.

Influence of environmental factors on the bacterial 
community structure
The PCA (Fig.  4) was used to determine the correla-
tion between the soil physical and chemical proper-
ties (Table  1) on the bacterial community distribution 
at the phylum level. The six best explained soil physical 
and chemical properties (Table  1) were considered for 
the PCA plot (Fig.  4). The PCA plot indicated that the 

Table 1 Mean _ standard error values of the physical and chemical properties of the sunflower rhizosphere soils

Legend: % - percentage, LTR- Rhizosphere soils from Lichtenburg, LTB- Bulk soils from Lichtenburg, KRPR- Rhizosphere soils from Krayburg, KRPB- Bulk soil from 
Krayburg. Data represent mean ±SE. Mean values having different alphabets are considered statistically significant (P≥ 0.05), while mean values having the same 
alphabets are considered not statistically significant (P ≥ 0.05), following Duncan’s multiple range test

Site LTR LTB KRPR KRPB

Organic matter (OM) (%) 1.85 ± 0.1a 1.81 ± 0.0a,b 1.19 ± 0.0b 1.27 ± 0.0c

Nitrate (N-NO3) (mg/kg) 11.54 ± 2.5ab 9.3 ± 0.0b,c 9.695 ± 0.3b,c 13.14 ± 0.0a

Ammonium (N-NH4) (mg/kg) 9.875 ± 0.1a 8.723 ± 0.1b 6.255 ± 1.1b,c 5.01 ± 0.0c

pH (N/A) 6.92 ± 0.1b 6.91 ± 0.0b 6.94 ± 0.2a 6.93 ± 0.0a

Resistivity conductivity (ohm) 2365 ± 135.0a 2120 ± 21.0a 855 ± 85.0b 890 ± 80.0b

Phosphorus (P) (mg/kg) 23.095 ± 1.2b 7.84 ± 3.1c 6.315 ± 0.9c 72.88 ± 2.3a

Calcium (Ca) (mg/kg) 1752.5 ± 3.5b 781 ± 1.5b 1680 ± 250.0a 659.5 ± 17.5b

Magnesium (Mg) (mg/kg) 350 ± 7.0a 145.5 ± 3.5c 311 ± 12.0b 148.5 ± 3.5c

Potassium (K) (mg/kg) 230 ± 7.0a 183 ± 1.0b,c 228 ± 18.0a,b 179.5 ± 2.5c

Sodium (Na) (mg/kg) 72.85 ± 2.4a 69.25 ± 3.3a,b 7.52 ± 0.18b 73.85 ± 0.9a

Total carbon (%) 0.685 ± 0.0a 0.6 ± 0.0a,b 0.5975 ± 0.0b 0.589 ± 0.1b

Total nitrogen (%) 0.057 ± 0.0a 0.055 ± 0.0b 0.056 ± 0.0b 0.0535 ± 0.0b

Sand (%) 85 ± 1.0a 87 ± 0.0b 76 ± 2.0b 77 ± 1.0b

Silt (%) 5 ± 0.0a 4 ± 1.0a 3 ± 1.0a 2 ± 0.0a

Clay (%) 20 ± 1.0a 19 ± 1.0a 21 ± 1.0a 21 ± 1.0a
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bacterial community structure was influenced by the 
soil physicochemical properties. The total variation was 
0.14385 and explanatory variable account for 100%. Using 

the vector length as an indicator, it is obvious that OM 
was at the mid-point. The vector lengths of total C, total 
N, and N-NH4 positively correlated with Planctomycetes, 

Fig. 1 A Rarefaction curves used to determine the bacterial species richness sequences across the cropping sites. LTR, rhizosphere soil from 
Lichtenburg site; LTB, bulk soil from Lichtenburg site. KRPR, rhizosphere soil from Krayburg site; KRPB, bulk soil from Krayburg site. B Venn diagram 
of the distributed operation taxonomic units between the bacterial communities (at the phyla level) of the rhizosphere and bulk soils obtained 
from sunflower farms in Lichtenburg and Krayburg. LTR- Lichtenburg rhizosphere soil; LTB- Lichtenburg bulk soil; ` KRPR = Rhizosphere soils from 
Krayburg, KRPB = Bulk soils from Krayburg. C Principal coordinate analysis (PCoA) of shared OTUs between the rhizosphere and bulk soils from 
Lichtenburg and Krayburg at phylum level. (LTR = Rhizosphere soils from Lichtenburg, LTB = Bulk soils from Lichtenburg, KRPR = Rhizosphere soils 
from Krayburg, KRPB = Bulk soils from Krayburg)
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Armatimonadetes, Cyanobacteria, and Gemmatimona-
detes from LTR. The vector length of N-NO3 and pH was 
positively correlated with Verrucomicrobia and unclassi-
fied sequences from KRPR.

Predictive functional information analysis associated 
with the bacterial community in the rhizosphere and bulk 
soils
The predictive functional categories of bacterial com-
munity composition with differences in their relative 
abundances across the sunflower farms at three differ-
ent levels were analyzed employing PICRUSt. At level 1 
functional classification, the bacterial predictive func-
tions were categorized into 6 major predicted func-
tions in both rhizosphere and bulk soils of the farms, 
including cellular processes, environmental information 

processing, genetic information processing, human dis-
eases, metabolism, and organismal systems (Figs. 5a and 
5b). Also, unclassified predicted functions were catego-
rized (Fig. 5b).

Furthermore, the predicted functions revealed at sec-
ond-level classification (Figs.  5a and 5b), 16 predicted 
functions including cell communication, cell growth 
and death, replication and repair, immune system dis-
eases, metabolic diseases, amino acid metabolism, bio-
synthesis of other secondary metabolites, carbohydrate 
metabolism, lipid metabolism, metabolism of cofactors 
and vitamins, metabolism of amino acids, xenobiotic bio-
degradation and metabolism, environmental adaptation 
and immune system were more predominant in LTR, 
whereas the predicted functions including cell motility, 
signal transduction, signal molecules and interaction, 

Fig. 2 Principal component analysis (PCA) of shared OTUs between the rhizosphere and bulk soils from Lichtenburg and Krayburg at phylum 
level. (LTR = Rhizosphere soils from Lichtenburg, LTB = Bulk soils from Lichtenburg, KRPR = Rhizosphere soils from Krayburg, KRPB = Bulk soils from 
Krayburg)

(See figure on next page.)
Fig. 3 A Taxonomic classification of the relative abundance of bacterial phylum from rhizosphere and bulk soils from Lichtenburg and Krayburg 
(LTR = Rhizosphere soils from Lichtenburg, LTB = Bulk soils from Lichtenburg, KRPR = Rhizosphere soils from Krayburg, KRPB = Bulk soils from 
Krayburg). The colour permeation gradient is designated as the scale bar based on the relative abundances; with a row z-score of the bacterial 
communities transformed relative abundance. B Taxonomic classification of the relative abundance of bacterial family from rhizosphere and bulk 
soils from Lichtenburg and Krayburg (LTR = Rhizosphere soils from Lichtenburg, LTB = Bulk soils from Lichtenburg, KRPR = Rhizosphere soils from 
Krayburg, KRPB = Bulk soils from Krayburg). The colour permeation gradient is designated as the scale bar based on the relative abundances; with a 
row z-score of the bacterial communities transformed relative abundance. C Taxonomic classification of the relative abundance of bacterial genus 
from rhizosphere and bulk soils from Lichtenburg and Krayburg (LTR = Rhizosphere soils from Lichtenburg, LTB = Bulk soils from Lichtenburg, 
KRPR = Rhizosphere soils from Krayburg, KRPB = Bulk soils from Krayburg). The colour permeation gradient is designated as the scale bar based on 
the relative abundances; with a row z-score of the bacterial communities transformed relative abundance
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Fig. 3 (See legend on previous page.)



Page 8 of 18Nwachukwu et al. Annals of Microbiology            (2023) 73:9 

cancers, infectious diseases, neurodegenerative disease, 
N-Glycan biosynthesis and metabolism, circulatory sys-
tem and nervous systems predominated the KRPR. The 
abundance of enzyme families in the soils across the sites 
were the same (1.86), except for LTB whose enzyme fam-
ily’s relative abundance was 1.85. N-Glycan biosynthesis 
and metabolism relative abundance (1.47) were the same 
in LTR and LTB whereas KRPR and KRPB were 1.52 and 
1.41 respectively.

The predicted functions revealed that at third-level 
selection (Fig.  6), the highest predicted functional pro-
filing of bacteria was in KRPR. The abundance of bacte-
rial motility proteins was predominant followed by ABC 
transporters (KRPR) whereas the least predicted function 
was the biosynthesis of steroid hormone (0.04) recorded 
in both the rhizosphere and bulk soils from Krayburg. 
Nitrogen (N) and sulfur (S) metabolism were higher in 

KRPR. Beta-Lactam resistance was the same (0.07) across 
all sites and samples.

We found that amino acids and derivatives pathways 
including alanine, aspartate and glutamate metabolism, 
phenylalanine metabolism, tryptophan, cyanoamino 
acid metabolism and taurine and hypotaurine metabo-
lism, were more abundant in LTR than in other samples 
(Fig S2). Alternatively, the relative abundances of amino 
acid related enzymes, arginine and proline metabolism, 
cysteine and methionine metabolism, glycine, serine and 
threonine metabolism, histidine metabolism, lysine deg-
radation, tyrosine metabolism, D-alanine metabolism, 
D-arginine and D-ornithine metabolism, D-glutamine 
and D-glutamate metabolism, glutathione metabolism, 
and phosphonate and phosphinate metabolism were 
more in KRPR than in other samples (Fig S2).

Fig. 4 Principal Component Analysis (PCA) plot of the bacterial phyla distribution and soil environmental variables of both rhizosphere and 
bulk soils from Lichtenburg and Krayburg. (OM = Organic matter, N-NH4 = Ammonium-N, N-NO3 = Nitrate, Total C = Total carbon, Total N = Total 
nitrogen)

(See figure on next page.)
Fig. 5 a Major metabolisms of bacterial communities in the sunflower rhizosphere and bulk soils from Lichtenburg and Krayburg at level 1 and 
2. (LTR = Rhizosphere soils from Lichtenburg, LTB = Bulk soils from Lichtenburg, KRPR = Rhizosphere soils from Krayburg, KRPB = Bulk soils from 
Krayburg). b Major metabolisms of bacterial communities in the sunflower rhizosphere and bulk soils from Lichtenburg and Krayburg at level 1 
and 2. (LTR = Rhizosphere soils from Lichtenburg, LTB = Bulk soils from Lichtenburg, KRPR = Rhizosphere soils from Krayburg, KRPB = Bulk soils from 
Krayburg)
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Fig. 5 (See legend on previous page.)



Page 10 of 18Nwachukwu et al. Annals of Microbiology            (2023) 73:9 

The predictive functions and bacterial community 
distribution in the rhizosphere and bulk samples
The PCA (Fig.  7) was used to illustrate the correlation 
between the predictive functional categories (Level 1) on 
the bacterial community distribution at the phylum level. 
The PCA plot indicated that axis 1 had 94.17% and axis 

20.5%. The vector length of environmental information 
processing positively correlated with Spirochaetes, Verru-
comicrobia, Firmucutes, unclassified sequences and unclas-
sified bacterial community structure. The vector length of 
organismal systems positively correlated with Elusimicro-
bia, Nitrospirae, Acidobacteria and Actinobacteria.

Fig. 6 Selected predictive metabolic pathways of bacterial communities in the rhizosphere and bulk soils of sunflower from Lichtenburg 
and Krayburg at level 3. (LTR = Rhizosphere soils from Lichtenburg, LTB = Bulk soils from Lichtenburg, KRPR = Rhizosphere soils from Krayburg, 
KRPB = Bulk soils from Krayburg)

Fig. 7 Principal Component Analysis (PCA) of major predictive functional information (Level 1) of bacterial communities in the rhizosphere and 
bulk soils from Lichtenburg and Krayburg. The vector lengths depict the strength of the dominance of the bacterial metagenomes
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The impact of soil physical and chemical properties 
on bacterial predictive functions
To determine the relationship between the predic-
tive functional categories of bacterial communities in 
the samples from LT and KRP and soil physical and 
chemical properties, we used PCA (Fig S3). The for-
ward selection result of environmental factors that best 
explain the variations in the bacterial structural com-
position and predictive functional categories revealed 
that only the p-value of N-NH4 at the structural 

categories was statistically significant (Table  2). The 
total variation was 0.00093 and the explanatory varia-
ble account for 100%. The results revealed that OM had 
the most explained variable and contribution of 93.4% 
at the structural classification, whereas pH had the 
most explained variable and contribution of 75.7% at 
the predictive functional categories, which is depicted 
by the length of the vector arrows, as shown in Fig S3 
and Table 2.

Alpha diversity assessment of bacterial communities 
and predictive functions in the rhizosphere and bulk soil
The Simpson, Shannon_H and Evenness diversity index 
values within the samples were used to describe the 
alpha diversity of the bacterial communities at the taxo-
nomic level presented in Table 3 across the sites. At the 
phylum and family levels, high Shannon_H diversity 
index values were obtained between the samples com-
pared with other diversity indices measured across the 
farm sites (Table  3). These diversity indices at phylum 
and family levels demonstrated that there were no sig-
nificant differences (p > 0.05) in the alpha diversity of 
the bacterial composition. Based on Shannon_H diver-
sity indices, LTR had the highest alpha diversity index 
observed at the family level, and the least Shannon_H 
diversity index values were obtained LTB at the phylum 
level (Table 3).

Also, the result from the predictive functional cat-
egories analysis (Kruskal–Wallis, p-value = 0.51) 
(Table 3) showed that Shannon_H in LTR had a higher 
alpha diversity index compared to other samples. The 
alpha diversity showed that bacterial diversity and 
predictive functions were not significantly differ-
ent (p-value > 0.05) between the LTR, LTB, KRPR and 
KRPB (Table 3).

Table 2 The forward selection results of environmental variables 
that best explains the variations in bacterial structure and 
predictive functions from rhizosphere and bulk soil samples 
using the canonical correspondence analysis

Legend: Organic matter, %—percentage, p – probability value, OM = Organic 
matter, N-NH4 = Ammonium-N, N-NO3 = Nitrate, Total C = Total carbon, Total 
N = Total nitrogen.

Soil property Explains % Contribution 
%

F P

Bacterial 
structure

OM (%) 93.4 93.4 28.3 0.102

N-NH4 (mg/
kg)

85.7 85.7 12.0 0.048

pH 75.0 75.0 6.0 0.292

Total N (%) 28.7 28.7 0.8 0.354

Total C (%) 42.0 42.0 1.4 0.054

N-NO3 11.2 11.2 0.3 0.522

Predictive 
functional 
category

OM (%) 74.9 74.9 6.0 0.31

N-NH4(mg/kg) 53.8 53.8 2.3 0.35

pH 75.7 75.7 6.2 0.338

Total N (%) 7.7 7.7 0.2 1

Total C (%) 27.3 27.3 0.8 0.696

N-NO3 14.0 14.0 0.3 0.842

Table 3 Alpha diversity indices of bacterial community and predictive functions of the sunflower rhizosphere and bulk soils from the 
sites

Legend: p– probability value, LTR- Rhizosphere soil from Lichtenburg, LTB- Bulk soil from Lichtenburg, KRPR- Rhizosphere soil from Krayburg, KRPB- Bulk soil from 
Krayburg

Diversity indices LTR LTB KRPR KRPB p-value

Bacterial taxonomic level Simpson_1-D 0.7376 0.5639 0.7364 0.7201 0.50

Shannon_H 1.67 1.333 1.488 1.471

Evenness_e^H/S 0.3542 0.2529 0.3163 0.3109

Family Simpson_1-D 0.7798 0.736 0.7794 0.7576 0.51

Shannon_H 2.286 2.105 1.887 1.954

Evenness_e^H/S 0.3172 0.2736 0.2276 0.2433

Predictive functional categories Simpson_1-D 0.9368 0.9346 0.9373 0.9368 0.50

Shannon_H 3.028 3.003 3.026 3.015

Evenness_e^H/S 0.4998 0.4916 0.5027 0.4975
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Discussion
Sunflower is an important oil-seed crop, hence, increas-
ing its production is a major step toward ensuring food 
availability and sustainable agriculture. Improving 
sunflower yield requires a better understanding of the 
structural, functional and metabolic potentials of the 
diverse bacterial communities abundant in their rhizo-
sphere, especially those involved in biogeochemical 
cycles, plant-growth promotion, conservation of eco-
system function and sustainable agriculture (Li et  al. 
2022). In a bid to comprehend the activities in the plant 
rhizosphere, we employed a next-generation sequencing 
technique to evaluate the bacterial community struc-
ture in the rhizosphere and bulk soil of sunflower at the 
growing stage.

According to the information on the farm history, we 
postulated that soil physicochemical properties and agri-
cultural practices, including the use of organic manure, 
chemical fertilizer, and cropping type (mono-cropping, 
and mixed cropping) may influence the bacterial diversity 
and their functions in the sunflower rhizosphere, which 
compelled the choice of the sampling sites. The applica-
tion of organic manure and chemical fertilizer to enhance 
soil nutrients and plant growth, in reverse, may incite a 
shift in the bacterial community structure and soil prop-
erties (Li et  al. 2017a). Our results demonstrated that 
agricultural practices altered both the structure and func-
tional traits of the rhizosphere bacterial communities.

The use of next-generation sequencing technique 
(amplicon-based approach) has been employed in stud-
ies to evaluate the diversity of the bacterial communi-
ties in the rhizosphere soil of maize, soybean, as well as 
sunflower with success (Kielak et al. 2016; Naumoff and 
Dedysh 2012). In the present study, predominant bacte-
rial phyla were identified in the rhizosphere and bulk 
soil of sunflower at the growing stage. The presence of 
these bacterial phyla might be due to their attraction 
to form a community within the rhizosphere. Most of 
the identified rhizosphere bacterial phyla have been 
previously reported in the rhizosphere of sunflower, 
soybean, wheat and maize (Alawiye and Babalola 2021; 
Igiehon et al. 2021; WEN et al. 2016). Firmicutes con-
tributes a significant quantity of nitrogen to plant 
nutrition resulting to increase in agricultural crop yield 
(Ichihashi et  al. 2020). Acidobacteria have previously 
reported to play a significant role in carbon cycling 
because of their potential to degrade complex plant tis-
sues, as well as lignin and cellulose, though, their role 
in the rhizosphere is not well recorded (Ward et  al. 
2009), whereas Bacteroidetes contain some species that 
are involved in nitrogen cycling through denitrification 
(Chaparro et al. 2014).

The abundance of the identified bacterial phyla in sun-
flower soils from Lichtenburg has been reported to be 
important in improving soil health, plant growth and 
disease suppression (Kielak et  al. 2016; Naumoff and 
Dedysh 2012; Li et al. 2017b). The phylum Armatimona-
deteswas among the less abundant bacteria community 
identified in LT and it is relatively novel and was formerly 
recognized as a member phylum OP10. (Hu et al. 2014; 
Jiménez et al. 2020). There is limited information on its 
function in the rhizosphere or of the phylum (Jiménez 
et  al. 2020). The unclassified bacterial phyla and identi-
fied unclassified sequences may create insights for fur-
ther research in determining their novel distinctiveness.

The dominance the bacterial community in LTR com-
pared to other samples may indicate the agricultural 
relevance of this bacterial family, whereas the bacterial 
community dominant in the KRPR site has been reported 
to be important plant growth-promoting bacteria. Simi-
larly, the majority of these families have been shown to 
positively influence sunflower growth in the past (Tseng 
et al. 2021; WEN et al. 2016; Majeed et al. 2018).

Furthermore, differences in the relative abundance of 
the majority of bacterial community compositions in the 
rhizosphere soil of sorghum, maize, mustard, and cucum-
ber plants have been shown to improve agrobiodiversity 
(Agomoh et  al. 2020; Ali et  al. 2019; Wang et  al. 2012). 
Moreover, the effect of climatic conditions and soil man-
agement practices impact the distribution of bacterial 
communities in the rhizosphere (Igiehon and Babalola 
2018). Interestingly, the variation in the bacterial com-
munity observed in the rhizosphere soil of Lichtenburg 
compared to the rhizosphere soil of Krayburg supports 
the study’s hypothesis on the influence of mixed and crop 
rotational farming systems on the diversity of bacterial 
communities under diverse agricultural practices.

In the present study, the bacterial diversity indices at 
the phylum and family level showed a significant differ-
ence in the bacterial distribution across sites and this fur-
ther explained how mixed cropping and crop rotational 
practice showed greater bacterial diversity in Lichten-
burg than the mono-cropping system in Krayburg. The 
use of crop rotation systems in maintaining stable biodi-
versity and bacterial activities has been documented by 
(Gentsch et al. 2020). The series of mixed cropping sys-
tem can increase nutrient acquisition and nutrient bio-
availability, which directly increases rhizospheric bacteria 
and selectively attracts diverse plant growth-promoting 
bacteria into the region (Tyler 2021; Couëdel et al. 2018).

The bacterial phylum identified in this study, such as 
Elusimicrobia predominantly in soils from Lichtenburg, 
has not been reported in the soil of any oilseed crops, 
thus revealing its bioprospecting potential in agriculture. 
However, a study by (Gkarmiri et  al.  2017) revealed an 
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abundance of Verrucomicrobia, Gemmatimonadetes, 
Planctomycetes, Proteobacteria, Acidobacteria, Act-
inobacteria, and Chloroflexi in the rhizosphere soil of 
oilseed rape has been documented. The most active phy-
lum Proteobacteria from the KRPR corroborates with 
that of (Saleem et al. 2016), who reported a similar bac-
terial phylum from the rhizosphere and roots of burley 
tobacco plants.

Intriguingly, the different families of rhizospheric bac-
teria in the LTR and KRPR can highlight their impor-
tance in agriculture in improving plant growth and 
health. Because of the large number of unclassified bacte-
ria phyla found in sunflower using amplicon sequencing, 
the findings of this study can be used as a model in future 
studies of plant growth-promoting rhizospheric bacteria 
associated with oilseed crops, including sunflower. Con-
tinuous fertilization of farming soils may alter the bacte-
rial diversity and nutritional profile (Zhang et  al. 2020; 
Xiong et al. 2021).

Correspondingly, researchers have documented that 
OM is an important factor determining the diversity 
of bacterial in different soils, including sunflower and 
other agricultural soils (Cordero et al. 2020; WEN et al. 
2016). The diversity, abundance, and richness of bacte-
rial communities are largely dependent on the soil OM 
content. This study revealed that the soil OM influenced 
the relative abundances of the major phyla differently 
across the sites.

The vector lengths of the environmental variables in 
the PCA plot revealed that OM is not the only factor 
that influences the modelling of the bacterial communi-
ties and their functional diversity. The pH of the soil is a 
fundamental driver of the bacterial community structure 
(Qu et al. 2020). The pH values of sunflower rhizosphere 
and bulk soils ranged from 6.91 to 6.94 and this validates 
the findings of (Alawiye and Babalola 2021), who docu-
mented pH values, ranging from 5.8 to 6.6 on rhizos-
phere soils collected from four sunflower farms in South 
Africa. The effect of these factors on rhizospheric bacte-
rial structure diversity and their functional potentials has 
been reported (Chen et al. 2021), though, may form the 
bacterial community structure and selection of soil for 
agricultural purposes.

In accordance to (Jacoby et  al.  2017), phosphorus, 
sodium and potassium available in the rhizosphere also 
contribute to the soil microbial community structure and 
participate in the mineralization processes critical for 
plant nutrition in natural ecosystems. The secretion of 
root exudates released by plants is linked to the modu-
lation of microbial communities and their functions in 
the rhizosphere (Bargaz et al. 2018). Also, root exudates 
initiate’s connections between the plant roots and soil 
microbes. The alpha diversity revealed no significant 

difference (p-value > 0.05) between bacterial diversity and 
predictive functions of the soils from LTR, LTB, KRPR 
and KRPB. In this study, the sunflower rhizosphere effect 
is the major driving force of alpha diversity.

Sunflower root exudates can influence bacterial diver-
sity and functions in the rhizosphere and bulk soils after 
secreting different profiles of bioactive compounds and 
nutrients into the rhizosphere (Reavy et  al. 2015; Wei 
et al. 2019). The alpha diversity indices (Shannon_H) also 
indicated that only the predictive functional diversity 
represented by the bacterial metagenomes of the rhizo-
sphere and bulk soils passed its hypothetical limit of 2.81 
(Dinsdale et al. 2008; Rygaard et al. 2017), suggesting that 
bacterial metagenomes were most characterized in both 
soils from LTR, LTB, KRPR, and KRPB. The Simpson and 
Evenness diversity indices for the metagenomes across all 
samples were < 1, indicating that there are a few predomi-
nant bacterial taxa, (e.g. Moraxellaceae, Solirubrobacte-
raceae, Chitinophagaceae, and Streptomycetaceae) and 
the predictive functional categories (At level 1, cell pro-
cessing, environmental information processing, genetic 
information processing, organismal systems, metabo-
lisms, and human diseases) in each soil samples.

The relative abundance of bacterial predictive func-
tional categories at the second-level was used to dis-
tinguish the particular predictive functions that are of 
greater benefit to the bacteria present in a given habitat. 
Bacteria from soil use carbons as a source of energy for 
metabolism and growth, so they rely on diverse carbon 
sources such as maltose, inositol, glucose, and mannose 
for their growth and survival. Evidently, this is seen in the 
abundance of predictive functional categories involved in 
carbon dioxide, di- and oligosaccharides fixation and car-
bohydrate metabolism at level 2, as well as the presence 
of metabolic pathways related to sugar usage, galactose 
metabolism, fructose and mannose metabolism, starch 
and sucrose metabolism, pentose phosphate pathway and 
TCA cycle in our samples.

Also, bacteria use amino acids as an energy source for 
survival in environments with poor nutrient and in envi-
ronments with little OM content (Gianoulis et al. 2009). 
This is in agreement with the results obtained for the soil 
physicochemical properties of our samples, where we 
found higher amounts of OM, N-NO3, P, and Na in the 
LTR samples than in the samples from the Krayburg site. 
The reason for the decline in soil nutrients in KRPR soil 
samples may be because of cropping system and land-use 
practices, this substantiate the report from previous stud-
ies that continuous cropping of a particular crop depletes 
soil nutrients (Kumar Behera et al. 2009; Dhaliwal et al. 
2019; Foley et  al. 2005; El-Fouly et  al. 2015; Chen et  al. 
2018). Therefore, as a response mechanism for bacte-
rial survival in nutrient-poor soils, the richness of genes 
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linked with cell motility (bacterial mobility proteins and 
bacterial chemotaxis) is necessary.

Our findings demonstrated that the bacterial com-
munities found in soil samples assist plants in acquir-
ing carbon through various metabolic pathways (Wang 
et al. 2019; Xu et al. 2020; Prabha et al. 2019). In addition, 
sequences related to the metabolism of important min-
eral nutrients like S and N were discovered in soils. LTR 
and KRPR had larger relative abundances of these pre-
dictive functions than LTB and KRPB. Mineral nutrients 
are required for plant growth and health. As a result, our 
findings suggest that the bacterial communities found in 
our samples assist sunflower plants in obtaining essential 
nutrients for growth and development.

Similarly, at level 3, the presence of selected predicted 
metabolic functions such as ABC transporters, oxida-
tive phosphorylation, glycerophospholipid, and nitrogen 
and sulfur metabolism in our samples indicate that bac-
terial communities inhabiting these soils play an impor-
tant role in promoting nutrient cycling and plant growth 
(Tang et  al. 2016; Reed et  al. 2011; Lindsay et  al. 2010). 
The metabolism of sulfur in level 3 revealed that the sam-
ples were also dominated by S. Studies have documented 
many critical roles played by bacteria found in various 
environments, including sunflower soil in the enzymatic 
sulfur metabolism (Wrighton et al. 2012; Yin et al. 2014; 
Zhang et al. 2016). Hence, the presence of genes involved 
in sulfur metabolism in our samples suggests that the 
bacteria present in our soil samples contribute to sustain-
ing a balanced sulfur metabolism in their environments.

Moreover, we observed the presence of sequences 
involved in the biosynthesis of chelating and iron com-
pounds such as siderophore in our results. Iron is a 
micronutrient that is important in the initiation of meta-
bolic pathways and a constituent of the prosthetic group 
in living organisms (Dimkpa et al. 2009). Abiotic stresses 
in plants caused by iron can be alleviated by bacteria 
through high-affinity transport systems linking the bio-
synthesis of siderophores. The transport systems play 
critical roles in many soil environments, including aid-
ing the competitive acquisition of iron for plant usage 
(Prabha et al. 2019; Mohapatra et al. 2021).

The sequences associated with metabolic activity, ABC 
transporters, were discovered at level 3. Most of these 
metabolic genes were found to be abundant in the Kray-
brug samples. As a result, we predict that our samples 
will be dominated by bacteria that aid in the acquisition 
of minute iron, hence increasing iron bioavailability in 
our soil samples. At level 3, we observed the predicted 
metabolic processes, such as those involved in second-
ary metabolism, virulence, disease, and defense, stress 
response, and aromatic chemical metabolism. The abun-
dance of sequences relevant to antibiotic and hazardous 

chemical resistance, siderophores, plant hormones, oxi-
dative stress, and virulence regulation at level 3 support 
these findings.

The metabolic pathways involved in indole alkaloid bio-
synthesis, flavonoid biosynthesis, clavulanic acid biosyn-
thesis, steroid hormone biosynthesis, inositol phosphate 
metabolism, linoleic acid metabolism, and N-Glycan 
biosynthesis were all shown to be abundant at level 3. 
Sequences associated to streptomycin biosynthesis and 
antibiosis resistance, particularly beta-lactam resistance, 
were discovered once more. Secondary metabolism, 
which includes the bacterial community’s biosynthesis of 
several metabolites (low molecular-weight compounds) 
as a sign of metabolic complexity, is an important feature 
of bacteria from soil (Berdy 2005; Barka et al. 2016). Bac-
teria use this defense mechanism to defend themselves 
against pathogens. As a result, they are important in 
clinical practice, serving as antimicrobials and antibiotics 
(Newman and Cragg 2016).

Many of the bacterial phyla identified, such as Pro-
teobacteria, Actinobacteria, Firmicutes, and Bacteroi-
detes, produce a variety of bioactive compounds, such as 
siderophores, which act as antibacterial, antifungal, and 
biosurfactant (Hwang et  al. 2014; O’Connor 2015; Lud-
wig-Müller 2015; Gómez Expósito et  al. 2017). Because 
secondary metabolism is so important to plant growth, 
competent culturing methods must isolate and identify 
bacterial strains from the soil bacterial community that 
can perform secondary metabolic functions efficiently 
for increased crop yield. As a result, examining the soil 
bacterial community for bacteria that have these differ-
ent genes can lead to the classification of novel second-
ary metabolic traits that can be used as biofertilizers in 
soils and plants to enhance resistance against pathogenic 
attacks. Our findings are in accordance with previous 
studies that show the diversity and abundance of genes 
linked to antibiotic resistance (Wang et  al. 2013; Enag-
bonma and Babalola 2020).

The metabolic pathways of amino acids at level 3 
revealed the samples were also dominated by amino 
acids and derivatives. Our results indicate that the bac-
terial communities inhabiting the fields can produce 
amino acids such as glutathione and Lysine involved 
in the protection against oxidative stress in the crops 
such as sunflower plants (Takagi and Ohtsu 2016). The 
high richness of the unclassified predicted functions 
and poorly characterized predicted functions at level 1 
and level 2 respectively in our samples, show that there 
are many bacterial genes whose predicted functions 
in the soils are still uncharacterized. Though, the fact 
that they are present indicates that they contribute to 
significant functions in the soils that can be useful to 
the plants’ growth and health.
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Another hypothesis of this study was that the phys-
icochemical parameters would influence the predic-
tive functional attributes of the bacterial communities 
in the samples. The aggregation of various bacterial 
communities occurs because of the pressure of selec-
tion of sunflower roots that constantly release exu-
dates containing amino acids and carbohydrates into 
the rhizosphere. The effect of host plants on the bacte-
rial diversity in the rhizosphere has been observed in 
various agricultural plants including, maize, wheat and 
peas (Mohammadi et  al. 2011; Gentsch et  al. 2020). 
(Hamel et  al.  2006), documented that in a study of 
high-frequency pea production, there was a rise in the 
diversity of bacteria in pea rhizosphere soil with min-
eral nitrogen levels compared to the bulk soil.

Furthermore, metagenomic analysis of wheat rhizo-
sphere and bulk soil found that the rhizosphere soil 
has higher bacterial diversity than the bulk soil (Priya 
et  al. 2018; Velázquez-Sepúlveda et  al. 2012). More-
over, several research focused mostly on selected 
rhizospheric isolates have found that the rhizosphere 
region of young plants is a more unpredictable envi-
ronment than the rhizosphere region of mature plants 
during the developing phases of maize (Tiemann et al. 
2015). This is consistent with the findings of (García‐
Salamanca et  al.  2013), who reported that the rhizo-
sphere is a more nutrient-dense ecosystem than bulk 
soil, and that the activity levels of some enzymes from 
bacterial cells in the maize rhizosphere, such as dehy-
drogenase, β-glucosidase, and alkaline phosphatase, 
were higher than similar enzymatic activity tested in 
bulk soil.

We also discovered that physicochemical parameters 
influenced the predicted functionalities. The primary 
factors to the distinctiveness exhibited in soil bacterial 
structural diversity have been identified as soil physic-
ochemical characteristics (Shi et al. 2011; Hanson et al. 
2012). The functional diversity of bacterial communi-
ties is driven by soil characteristics, according to stud-
ies (Shi et  al. 2011; Hanson et  al. 2012). The present 
study’s findings show that the physical and chemical 
properties of the soil impacted the relative abundance 
of bacterial predicted functions in the two study sites.

Conclusion
Understanding on the roles of various rhizospheric 
bacterial communities in the promotion of plant 
growth and health using 16S rRNA gene sequencing 
creates novel prospects for enhancing effective and 
eco-friendly methods for improving agricultural yield 
through the manipulation of microorganisms. Dissimi-
larities in predominant bacterial communities were 

documented between the rhizosphere and bulk soil 
across the sites. The dominance of unclassified bacteria 
and sequences in the samples proposes further studies 
in developing culturable approaches for their classifica-
tion and discovery of new genes that can be harnessed 
as bioinoculants in developing environmentally friendly 
agriculture.

Across the sites, bacterial diversity was positively and 
negatively influenced by environmental variables. The 
predicted functional attributes of these bacteria propose 
their agricultural significance, which can be discovered in 
emerging biofertilizers as a substitute to chemical ferti-
lizer. Because of the economic importance of sunflower, it 
is recommended to employ culture-dependent methods, 
invitro inoculation of seeds, and planting in the fields and 
greenhouse to further study the potential of rhizospheric 
bacteria on sunflower crops. Also, mining the metagen-
omes using more advanced techniques is important to 
identify novel genes that encode valuable metabolic path-
ways with numerous essential functions crucial for plant 
development and enhancement of sustainable agriculture 
[Klimek et al., 2016, Kumar and Dubey 2020].

Likewise, understanding plant-associated microorgan-
isms under different cropping systems will help deter-
mine their functional roles in nutrient cycling, plant 
nutrition, development, and health. Interestingly, this 
study offers clear proof of the effect of agricultural prac-
tices, crop rotation and physicochemical properties on 
the bacterial diversity in sunflower soils from the two 
sites (Lichtenburg- LT and Krayburg- KRP). Conclusively, 
this study will enable the agricultural industry to enhance 
economic, agricultural and environmental sustainability 
by making critical soil management decisions.
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