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Abstract

Purpose: Verminephrobacter is a genus of symbiotic bacteria that live in the nephridia of earthworms. The bacteria
are recruited during the embryonic stage of the worm and transferred from generation to generation in the same
manner. The worm provides shelter and food for the bacteria. The bacteria deliver micronutrients to the worm. The
present study reports the genome sequence assembly and annotation of a new strain of Verminephrobacter called
Verminephrobacter eiseniae msu.

Methods: We separated the sequences of a new Verminephrobacter strain from the whole genome of Eisenia fetida
using the sequence of V. eiseniae EF01-2, and the bacterial genome was assembled using the CLC Workbench. The
de novo-assembled genome was annotated and analyzed for the protein domains, functions, and metabolic
pathways. Besides, the multigenome comparison was performed to interpret the phylogenomic relationship of the
strain with other proteobacteria.

Result: The FastqSifter sifted a total of 593,130 Verminephrobacter genomic reads. The de novo assembly of the
reads generated 1832 contigs with a total genome size of 44 Mb. The Average Nucleotide Identity denoted the
bacterium belongs to the species V. eiseniae, and the 16S rRNA analysis confirmed it as a new strain of V. eiseniae.
The AUGUSTUS genome annotation predicted a total of 3809 protein-coding genes; of them, 3805 genes were
identified from the homology search.

Conclusion: The bioinformatics analysis confirmed the bacterium is an isolate of V. eiseniae, and it was named
Verminephrobacter eiseniae msu. The whole genome of the bacteria can be utilized as a useful resource to explore
the area of symbiosis further.
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Introduction

The symbiosis has been recognized as a central driver
for evolutionary innovation (Raina et al. 2018). The
symbiotic relationship defines the interaction between
the symbiont and host in an intimate association which
can be mutualisticc commensalistic, or parasitic
(Dimijian 2000). In mutualistic symbiosis, both the inter-
acting partners get the benefit from each other. In
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commensalism, the symbiont gets benefited in terms of
fitness without affecting or harming the host. In parasit-
ism, the symbiotic association harms the host, but the
symbiont enjoys the benefits (Fukui 2014). In the recent
past, the event of symbiosis in the annelids has been
explored to a certain extent. In marine annelids, the
chemosynthetic symbionts act as a potential supplier of
energy and carbon (Dubilier et al. 2008). In medicinal
leech, the symbionts play an essential role in supplying
the necessary nutrients and vitamins usually lacking in
the blood meal (Lund et al. 2010). In lumbricid earth-
worms, the symbionts reside in the excretory organ and
benefit the species through internal recycling of the
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nitrogen. Among these symbionts, the well-delineated
organism is Verminephrobacter.

The Verminephrobacter genus comprises bacteria that
inhabit the nephridia of earthworms. The bacteria are
given shelter and food by earthworms. The bacterium, in
turn, provides a reproductive advantage to the earth-
worm (Lund et al. 2010; Viana et al. 2018). Apart from
this bacterial genus, there are also other bacteria that
harbor the earthworms’ nephridia (Davidson et al. 2013).
The nephridia are present in pairs in each segment of
earthworms and they interconnect adjacent septa. The
coelomic fluid is taken in through the nephrostome in
one segment and is circulated through three loops and
finally emptied outside through nephridiopore present in
the adjacent segment. The symbiotic bacteria are present
in the region of the second loop known as the ampulla
(Schramm et al. 2003). The bacteria are deposited in the
cocoon along with the eggs and sperms. It lives on the
albumin present in the cocoon and is selectively
recruited through a canal that forms in the embryos
(Davidson and Stahl 2008). Using the type IV pili, bac-
teria reach the bladder and then the bacteria use flagella
to reach further to the ampulla (Dulla et al. 2012). The
bacteria help for earlier sexual maturity and increase co-
coon hatching success rate during nutrition depletion
(Lund et al. 2010; Viana et al. 2018) and might also pro-
vide vitamin B, which is a source of the cofactor of
EMN and FAD and pyrroloquinoline quinone which
helps for better mitochondria function (Pinel 2009). In
total, 191 16S rRNA genes of different Verminephrobac-
ter clones are reported in the NCBI nucleotide database,
and the whole genome of V. aporrectodeae At4 (T) and
V. eiseniae EF01-2 was sequenced already (Kjeldsen
et al. 2012; Pinel et al. 2008).

Recently, we have performed the whole-genome an-
notation of earthworm Eisenia fetida, and among the
annotated 29,552 protein-coding genes, 6121 genes
were obtained from the bacteria (Paul et al. 2018).
This indicates the symbiotic relationship and event of
vertical gene transfer between the symbiont and host
(Davidson et al. 2014; Paz et al. 2017). Since 61% of
these bacterial genes were retrieved from the vastly
studied earthworm symbiont Verminephrobacter eise-
niae, it captivated us to focus on the genetic material
of bacterium to identify whether it is the different
species of Verminephrobacter genus or a new strain
of the V. eiseniae species. Significantly, the 16S rRNA
confirmed that our studied bacterium was a new
strain of the Verminephrobacter eiseniae species. The
present paper deals with the whole-genome sequen-
cing, genome feature annotation, and multigenome
comparison of the newly identified strain Vermine-
phrobacter eiseniae msu. The genome resource and
genome features of the strain unveiled through our
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study will be helpful to the earthworm research
community to analyze the symbiotic relation of the
species in depth.

Materials and methods

Retrieval, identification, and separation of the
Verminephrobacter genome sequence reads from
earthworm genome

The raw sequence reads of Eisenia fetida whole genome
were downloaded from NCBI using the GenBank
accession CYRZ000000000 (BioProject: PRJEB10048;
BioSample: SAMEA3495318) (Zwarycz et al. 2015). All
the forward and reverse read files were concatenated
using Linux command line programming. The Vermine-
phrobacter eiseniae EF01-2 chromosome and plasmid
sequences were downloaded from NCBI using the
GenBank accessions CP000542 and CP000543, respect-
ively. The genome sequence reads of earthworm E.
fetida were aligned to the Verminephrobacter eiseniae
EF01-2 genome using the Burrows-Wheeler Aligner
(BWA) algorithm (Li and Durbin 2009). The aligned
reads were sifted using the FastqSifter tool (https://
github.com/josephryan/FastqSifter).

Quality control, de novo assembly, and genome
completeness evaluation

The FastQC quality control tool version 0.11.8 (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) (An-
drews 2016) and CLC Genomics Workbench version 11.0.1
(Rathy et al. 2018) were used to analyze the quality of the
sifted raw reads and trim the ambiguous low-quality reads.
After quality assessment, the filtered reads were subjected
to de novo assembly by using the CLC Genomics Work-
bench. The quality of the assembly and completeness of the
genome were assessed by using the gVolante web server
with Benchmarking Universal Single-Copy Orthologs
(BUSCO) v1 ortholog search pipeline (Nishimura et al.
2017; Waterhouse et al. 2017). The BUSCO vl analyzed
the completeness of the genome based on the single-copy
orthologs obtained from OrthoDB v9 (Zdobnov et al
2016). The identified single-copy orthologs (BUSCOs) were
further categorized as complete and single-copy BUSCOs
(S), complete and duplicated BUSCOs (D), fragmented
BUSCOs (F), and missing BUSCOs (M). The SNPs, InDels,
and other structural variations present between the ge-
nomes of our Verminephrobacter bacteria and previously
reported Verminephrobacter eiseniae EF01-2 were detected
by using the Basic Variant Detection tool and the InDels
and Structural Variants tool of the CLC Genomics
Workbench.

16S rRNA analysis and identification of the bacteria
The 16S rRNA gene sequence within the bacterial gen-
ome was predicted by using the RNAmmer web server
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version 1.2 (Lagesen et al. 2007). Subsequently, the
predicted 16S rRNA sequence was blasted against the
curated 16S ribosomal RNA sequence database residing
in NCBI using the BLASTn algorithm and default pa-
rameters to identify its closest phylogenetic neighbors
based on sequence similarity. The top 50 closest neigh-
boring strains’ 16S rRNA sequences were extracted from
the BLAST search. The deduced 16S rRNA sequence of
Verminephrobacter eiseniae msu was aligned to its
nearby neighbor strains using the ClustalW multiple se-
quence alignment method (Thompson et al. 1994) with
the following parameters: gap opening penalty, 15; gap
extension penalty, 6.66; DNA weight matrix, IUB; and
transition weight, 0.5. The phylogeny reconstruction was
performed through a maximum likelihood method (Steel
and Penny 2000) with bootstrap replicate value 100 and
the Kimura 2-parameter substitution model using the
MEGA 7 software (Kumar et al. 2016). The best fit
substitution model was detected by using the Find Best
DNA/Protein Models (ML) tool of MEGA. The option
tests the alignment file for the goodness of fit to the
popular evolution prediction models using the parame-
ters like frequencies, transition probabilities, and rate
variation. The model with the lowest Bayesian
information criterion (BIC) score was considered as the
best model to describe the substitution pattern (Hall
2013). The taxonomic affiliation of the new Vermine-
phrobacter genome was confirmed through the Average
Nucleotide Identity (ANI) with the genomes of its
closely related taxa using the Orthologous Average
Nucleotide Identity Tool (OAT) (https://www.ezbio
cloud.net/tools/orthoani) with the species demarcation
cutoff value at 95% (Lee et al. 2016).

Genome annotation and visualization of bacterial

genome map

The initial genome annotation was performed by using
the NCBI Prokaryotic Genome Annotation Pipeline
(PGAP) (Tatusova et al. 2016) while submitting the
genome sequence to GenBank. Besides, the genome was
annotated by using the Rapid Annotation using Subsys-
tem Technology (RAST) version 2.0 (http://rast.nmpdr.
org/) (Aziz et al. 2008) and AUGUSTUS ab initio gene
prediction server (Hoff and Stanke 2013) using bacteria
as reference species. The AUGUSTUS-predicted protein-
coding genes were used for functional annotation and path-
way analysis. The non-coding RNA present in the genome
was predicted using the cmscan option of the Infernal soft-
ware. The mobile genetic elements such as DNA transpo-
sons and retrotransposons were predicted by scanning the
Verminephrobacter eiseniae msu genome using the tool
TEclass (http://www.bioinformatics.uni-muenster.de/tools/
teclass/generate/index.pl?lang=en) (Abrusan et al. 2009).
Simultaneously, the insertion sequence (IS) families
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associated with the Verminephrobacter eiseniae msu
genome were predicted by using the ISfinder tool (https://
www-is.biotoul.fr/) using the ISsaga pipeline (Varani et al.
2011). The graphical circular maps of the genome describ-
ing the sequence feature, base composition, and sequence
similarity plots were created by using the CGView server
(Grant and Stothard 2008).

Identification, functional annotation, and pathway
analysis of V. eiseniae msu protein-coding genes

The AUGUSTUS-predicted Verminephrobacter eiseniae
msu protein-coding genes were identified by BLAST
search against NCBI nr (non-redundant) database using
the BLASTx algorithm with E value threshold 1E-05.
The Gene Ontology (GO) annotation describing the
biological processes, molecular functions, and cellular
components associated with the V. eiseniae msu protein-
coding genes was performed by using the BLAST2GO
functional annotation software version 5.0 (Ashburner
et al. 2000; Conesa et al. 2005). The GO terms and the
enzyme commission number (EC number) were assigned
based on the parameters like annotation cutoff, 55; GO
weight, 5; E value hit filter, 1E-6; HSP hit coverage
cutoff, nil; and hit filter, 500. The conserved domains,
motifs, and functional sites associated with the V. eise-
niae msu genome were identified by annotating the
protein-coding genes against the InterPro database using
the InterProScan plug-in of BLAST2GO (Mulder and
Apweiler 2008). The orthologous groups related to the
V. eiseniae msu genes were predicted and classified by
using the EggNog tool (evolutionary genealogy of genes)
(http://eggnogdb.embl.de/) with the parameters E value,
1E-3; filter by similarity, 50%; and Hsp/Hit coverage
filter, 0 (Huerta-Cepas et al. 2015). The cellular and
metabolic pathways related to the bacterial genome were
predicted by annotating the protein-coding genes against
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
online database using KEGG Automatic Annotation
Server (KAAS) web annotation server (Moriya et al
2007). The KEGG pathways were predicted by assigning
the K numbers to the V. eiseniae msu genes obtained
from the bi-directional best hit (BBH) search.

Functional enrichment analysis between V. eiseniae msu
and V. eiseniae EF01-2 genes

The functional enrichment of the Gene Ontology (GO)
terms associated with Verminephrobacter eiseniae msu
genes in comparison with the Verminephrobacter eise-
niae EF01-2 genome dataset was analyzed by using
Fisher’s exact test integrated within BLAST2GO version
5.0 (Glass and Girvan 2014). The annotated genes of
Verminephrobacter eiseniae msu were used as the test
set, and the Verminephrobacter eiseniae EF01-2 protein-
coding gene annotations were used as the reference set
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for the analysis. Two-tailed Fisher’s test was carried out,
and the corrected P value < 0.05 was taken as statistically
significant.

Identification of symbiosis associated genes in V. eiseniae
msu genome

The symbiosis-associated genes present in the genome
dataset of V. eiseniae msu were identified by annotating
the bacterial protein-coding genes against the Symbiosis
database integrated within the GIPSy software (Soares
et al. 2016) using the BLASTx algorithm with an E value
cutoff of 1E-05. The metabolic pathways associated with
these genes were identified from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway annotation
using the KAAS web server (Moriya et al. 2007). The
functional analysis of the identified symbiotic genes was
performed through Gene Ontology (GO) annotation
using the OmicsBox software version 1.1 (https://www.
biobam.com/omicsbox/).

Multi genome alignment, comparison of the orthologous
genes, and phylogenomic analysis

The genome sequence of Verminephrobacter eiseniae
msu was aligned to the genomic dataset of its neighbor-
ing proteobacteria species: Alicycliphilus denitrificans
K601 (NC_015422), Delftia acidovorans SPH-1 (NC_
010002), Rhodoferax ferrireducens T118 (NC_007908),
Verminephrobacter aporrectodeae subsp. tuberculatae
strain At4d (AFAL00000000), and Verminephrobacter
eiseniae EF01-2 (NC_008786), by using Mauve multiple
genome alignment tool (http://darlinglab.org/mauve/
mauve.html) (Darling et al. 2004). The Mauve genome
alignment provides the complete scenario of the con-
served genomic regions across these species and also
portrays the events of genomic rearrangement and hori-
zontal gene transfer (Darling et al. 2004). The InDels
and structural variations between the V. eiseniae msu
strain and its neighboring proteobacterial genomes were
detected by using the variant detection tools of the CLC
Genomics Workbench. Simultaneously, the genome-
wide comparisons of the orthologous gene clusters
among these proteobacteria were analyzed by using the
OrthoVenn web server (http://www.bioinfogenome.net/
OrthoVenn/) (Wang et al. 2015). The phylogenomic
analysis of the selected proteobacterial genomes was
performed by REALPHY phylogeny builder server 1.2
(Bertels et al. 2014), and the phylogenomic tree was re-
constructed through a maximum likelihood method by
using the PhyML tool version 3.0 (Guindon et al. 2005).
The pan and core genome analysis between the above-
mentioned six bacterial strains were analyzed through
the orthology calling approach of the GET_HOMO-
LOGUES software package (Contreras-Moreira and
Vinuesa 2013). The software clusters the homologous
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gene families by using the bidirectional best hit (BDBH),
COQG, and OrthoMCL algorithms and estimates the pan
and core genome sizes for the given strains. The gen-
omic and pathogenic islands residing in the genome
dataset of V. eiseniae msu were predicted by using the
GIPSy software (Soares et al. 2016). Simultaneously, the
virulence factors and pathogens associated with the V.
eiseniae msu genome were predicted by annotating the
AUGUSTUS-predicted V. eiseniae msu protein-coding
genes against the Virulence Factor Database (VFDB)
(Chen et al. 2005) using the following parameters: E
value cutoff of 1E-10 (stringent condition) and mini-
mum sequence homology of 60% and above. The anti-
microbial resistance genes residing in the genome of V.
eiseniae msu were screened by annotating the protein-
coding genes (CDS) against the MEGARes database
using the local BLASTn search with an E value threshold
of 1E-10 (Lakin et al. 2016).

Results and discussion

Extraction of genome sequence reads, quality
assessment, and assembly

The whole genome of earthworm Eisenia fetida was re-
ported by Zwarycz et al. 2015, and though many of the
proteobacteria species have been reported, the whole
genome has been sequenced only for V. eiseniae EF01-2
and V. aporrectodeae subsp. tuberculatae At4d (Kjeldsen
et al. 2012; Pinel 2009). The genome sequence assembly
of V. eiseniae EF01-2 was used to fetch out the bacterial
sequences from the genome dataset of raw reads se-
quences of earthworm Eisenia fetida (Figure S1). A total
of 261,108,322 worm genome reads were concatenated
and processed for short read alignment. Among these
concatenated reads, a total of 593,130 paired-end reads
with an average length of 100 bp and GC content of 65%
were aligned to the genome dataset of V. eiseniae EF01-
2. The aligned reads were sifted and subjected to quality
assessment and trimming. After quality assessment and
trimming of ambiguous, low-quality reads and adapter
sequences, a total of 592,455 filtered reads were obtained
with an average length of 89.1 bp (Table S1, Figure S2).
The de novo assembly of the filtered reads using the
CLC Genomics Workbench version 11.0.1 generated a
total of 1832 contigs with a total genome size of 4,422,
260 bp (4.4 Mb). The genome assembly statistics ob-
tained from the CLC Genomics Workbench denoted the
average length, N50, and GC% of the assembled contigs
of a bacterial genome were 2414 bp, 3,593 bp, and
65.5%, respectively (Table S1). The bacterial genome se-
quence has been deposited in NCBI GenBank under the
accession number SDQN00000000. The genome size of
the type strain V. eiseniae EF01-2 was 5,597,943 bp and
that of V. aporrectodeae was 4,681,801 bp.
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In vertically transmitted, intracellular obligate symbi-
onts, the genome size gets reduced over time. For in-
stance, the genome size of symbiotic beta proteobacteria
was around 2 Mbp. Candidatus zinderia insecticola has
a 2.08-Mbp genome (McCutcheon and Moran 2010)
and the genome of Candidatus tremblaya princeps is
1.39 Mbp in size (Von Dohlen et al. 2001), but generally,
a bacterial genome ranges from about 4 to 6 Mbp. Isola-
tion of pure endosymbionts in a niche is the reason for
their smaller genome. An endosymbiotic bacterium has
reduced the chance of contact with other bacterial spe-
cies, and hence, the exchanges of DNA sequences from
different bacterial species are rare. It leads to the gen-
ome streamlining of the symbiotic bacteria. But Vermi-
nephrobacter is having an average bacterial genome size,
and there is a lack of genome erosion (Kjeldsen et al.
2012). The symbiotic relationship between the genus
Nephrothrix and lumbricid earthworms happened much
later than that between Verminephrobacter and earth-
worm (Kjeldsen et al. 2012). Nephrothix was shown to
have switched hosts and became species-specific which
could have occurred only through horizontal transmis-
sion. Verminephrobacter did not show any host switch-
ing evidence and is vertically transmitted via the cocoon.
Verminephrobacter is an extracellular symbiont and a
triangular association was established between the earth-
worm, Verminephrobacter, and Nephrothrix in the neph-
ridia which provides the chance for exchange of genes
between the organisms (Lund et al. 2014; Moller et al.
2015). Also, the biparental transmission of the symbiont
provides a chance for the exchange of genome fragments
(Paz et al. 2017). Simultaneously, the Verminephrobacter
can incorporate the species-specific foreign DNA from
the environment during the natural transformation
within the earthworm egg capsule (Davidson et al.
2014). The ability of the symbiont to uptake foreign
DNA may play an essential role to maintain their core
genome and assist in the inclusion of the foreign genes
within the host worm system (Davidson et al. 2014;
Treangen et al. 2008). The genome completeness was
evaluated by using the gVolante web server with the
BUSCO ortholog search pipeline. The BUSCO sets were
constructed by the orthologous group of genes, found as
single-copy orthologs in at least 90% of the species. In
our BUSCO analysis dataset, a total of 40 BUSCO ortho-
logous groups were identified. Among them, the genome
dataset of the extracted bacterial genome showed 85% of
complete BUSCO orthologs and 7.5% each of the frag-
mented and missing BUSCOs (Table S2). The variant
analysis demonstrated a total of 41,130 variants between
the genomes of our Verminephrobacter bacteria and re-
ported Verminephrobacter eiseniae EF01-2. Among these
41,129 variants, 1140 were multi-nucleotide variants
(MNVs), 39,116 were single nucleotide variants (SNVs),
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and 873 were InDels and structural variants. Of the 873
InDels and structural variants, a total of 451 deletions,
259 insertions, 7 inversions, 150 replacements, and 6
other structural variants were detected between the 2
genomes (Table 1). This indicates that the organism in
our study is a new strain of Verminephrobacter eiseniae.
Hence, the bacterium was named Verminephrobacter
eisenize msu. Here, msu refers to Manonmaniam
Sundaranar University, where the bacterial genome as-
sembly was done. The list of all the SNVs and MNVs
was documented in Table S3.

16S rRNA analysis and taxonomic classification

The generic feature format (GFF) file generated from
RNAmmer prediction showed a 16S rRNA gene se-
quence of the extracted bacterial genome in contig 776
from sequence positions 306 to 1827 with an HMM
alignment score of 1842.5. Only 1 16SrRNA sequence
was identified in the extracted bacterial genome. The
BLAST search of the predicted 16S rRNA sequence
against the 16S ribosomal RNA sequence database in
NCBI using the BLASTn algorithm showed that ex-
tracted bacterial 16S RNA molecule had the closest

Table 1 Summary of InDels and structural variants identified
between the Verminephrobacter eiseniae msu (SDQN0O0000000)
and Verminephrobacter eiseniae EF01-2 (NC_008786) genomes

Variant type

Variant subtype

No. of variants

Deletion Self-mapped 353
Deletion Paired breakpoint 59
Deletion Cross-mapped breakpoints 39
Total (deletion) 451
Insertion Self-mapped 138
Insertion Paired breakpoint 49
Insertion Close breakpoints 65
Insertion Tandem duplication 7
Total (insertion) 259
Inversion Cross-mapped breakpoints 7
Inversion Paired breakpoint 0
Total (inversion) 7
Replacement Paired breakpoint 150
Total (replacement) 150
Translocation Multiple breakpoints 0
Total (translocation) 0
Complex Cannot resolve sequence 5
Complex Multiple breakpoints 1
Complex Cross-mapped breakpoints 0
(invalid orientation)
Total (complex) 6
Total (InDels and 873

structural variants)
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phylogenetic similarity with the proteobacteria Vermine-
phrobacter eiseniae EF01-2 (99.87%), Verminephrobacter
aporrectodeae tuberculatae strain Atd (96.48%), Acido-
vorax delafieldii strain 133 (95.31%), and Acidovorax
defluvii strain BSB411 (94.88%). The top 50 16S rRNA
sequences from the BLAST search were aligned together
using the ClustalW tool. The Kimura 2-parameter sub-
stitution model with the discrete gamma distribution
(+GQ) of 5 rate categories and evolutionary invariable
sites (+I) was considered as the best model to describe
the substitution pattern as it received the lowest BIC
score of 15,390.05 (File S1). A maximum-likelihood
phylogenetic tree constructed based on the Kimura 2-
parameter substitution model using the MEGA 7
software placed the extracted genome along with the
proteobacteria from the genus Verminephrobacter with a
bootstrap confidence value of 100%. The strain showed
close evolutionary relatedness and grouped together as a
monophyletic clade with the proteobacteria Vermine-
phrobacter eiseniae EF01-2 (NR_074705 and NR_
043719), Verminephrobacter — aporrectodeae  subsp.
tuberculatae strain At4 (NR_116575), and Vermine-
phrobacter aporrectodeae subsp. caliginosae strain Ac9
(NR_116576) as they share the same common ancestor
(Fig. 1). Simultaneously, the taxonomic affiliation of the
new genome was verified using the Average Nucleotide
Identity (ANI) with its neighboring taxa using the Ortho-
logous Average Nucleotide Identity Tool (OAT). The ANI
comparison of our Verminephrobacter bacterial genome
demonstrated an OrthoANI score of 98.72% with the gen-
ome of Verminephrobacter eiseniae EF01-2, 81.92% with
Verminephrobacter aporrectodeae, and 76.64% with Vario-
vorax paradoxus (Figure S3). As the Average Nucleotide
Identity between the genome of Verminephrobacter eise-
niae msu and Verminephrobacter eiseniae EF01-2 is above
the species demarcation cutoff value (>95%) (Goris et al.
2007; Richter and Rossell6-Moéra 2009), it indicates that
the genome of our Verminephrobacter bacterial strain
belongs to the species Verminephrobacter eiseniae. Simul-
taneously, we aligned the NCBI Prokaryotic Genome
Annotation Pipeline (PGAP)-annotated 16S rRNA gene of
our Verminephrobacter bacteria with the 3 previously re-
ported full-length 16S rRNA genes of Verminephrobacter
eiseniae EF01-2 (File S2). The 16S rRNA gene sequence
alignment had a 0.13% mismatch.

Genome sequence annotation, mobilome analysis, and
genome map visualization

A PGAP annotation of the bacterial genome predicted a
total of 5895 CDS (4447 protein-coding genes and 1448
pseudogenes) and 40 RNA genes including 3 rRNAs, 34
tRNAs, and 3 other non-coding RNAs. The complete
PGAP annotation details were given in the whole-
genome shotgun sequencing project (WGS) with the
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GenBank accession number SDQN00000000. The anno-
tation of the V. eiseniae msu genome using the RAST
server predicted a total of 5963 protein-coding genes,
which were categorized into 302 subsystems (Fig. 2a).
The comparison of the RAST-annotated subsystem fea-
tures between V. eiseniae msu and V. eiseniae EF01-2
denoted that among the subsystems, “amino acids and
derivatives” (500 V. eiseniae msu genes and 481 V. eise-
niae EF01-2 genes); “fatty acids, lipids, and isoprenoids”
(183 V. eiseniae msu genes and 177 V. eiseniae EF01-2
genes); “membrane transport” (141 V. eiseniae msu
genes and 131 V. eiseniae EF01-2 genes); and “nucleo-
sides and nucleotides” (109 V. eiseniae msu genes and
79 V. eiseniae EF01-2 genes) were highly represented in
V. eiseniae msu compared to the V. eiseniae EF01-2 (Fig.
2b). In contrast, the subsystems like “cofactors, vitamins,
prosthetic groups, and pigments”; “cell wall and capsule”;
“RNA metabolism”; and “stress response” were observed
to be dominant in V. eiseniae EF01-2. The 3 RAST an-
notation terms membrane transport; fatty acid, lipids,
and isoprenoids; and amino acids and derivatives were
enriched in V. eiseniae msu compared to EF01-2. The
importance of membrane transport and lipid transfer is
well established in the legume-rhizobia symbiosis
(Udvardi and Day 1997) and Solemya velum symbiosis
(Conway and Capuzzo 1991). Earthworms may also get
benefited from the supply of lipids and amino acids from
Verminephrobacter. For instance, the riboflavin (vitamin
B,) acts as a major source for the autofluorescence prop-
erty of earthworms, and it also supports the regeneration
process of the worm upon amputation (Johnson Retnaraj
Samuel et al. 2011; Subramanian et al. 2017). The worm
lacks the ability to synthesize the riboflavin by itself. The
genome dataset of V. eiseniae msu denoted the bacter-
ium can successfully synthesize the riboflavin and may
act as a potential supplier of the vitamin to the host spe-
cies. The ability of the Verminephrobacter symbionts in
supplying the essential vitamins and cofactors to their
host worms has been reported previously (Lund et al.
2014). Simultaneously, the enhanced role of membrane
transport is needed for nutrient transfer particularly for
extracellular symbiosis (Smith et al. 1994). Besides, the
annotated subsystem features denoted that 37 genes are
associated with the “virulence, disease, and defense” fea-
ture including 18 genes for resistance to antibiotics and
toxic compounds, 18 genes for invasion and intracellular
resistance, and 1 gene for bacteriocins, ribosomally
synthesized antibacterial peptides. The RAST genome
annotation data were listed in Table S4. The AUGUST
US ab initio gene prediction server using bacteria as
reference species predicted a total of 3809 V. eiseniae
msu protein-coding genes. The number of PGAP- and
RAST-predicted protein-coding genes in our bacterial
strain genome was higher compared to the other
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Fig. 1 Phylogenetic tree based on 16S rRNA comparison of Verminephrobacter eiseniae msu with its closely related homologs. The tree was
constructed using the maximum likelihood method and bootstrapping of 100 replicates

reported Verminephrobacter symbionts (Kjeldsen et al. close to the predicted coding genes of Verminephrobac-

2012). This may be due to the assembly/annotation error
or the presence of redundant contigs in the genome
dataset. In contrast, the number of AUGUSTUS-pre-
dicted protein-coding genes for Verminephrobacter
eiseniae msu strain was considerably lower and found

ter aporrectodeae subsp. tuberculatae strain Atd" (Vtu)
(Kjeldsen et al. 2012). Notably, the total genome size of
our strain was also observed close to the genome size of
Vtu symbiont. The mobile genetic elements detected by
using the TEclass tool denoted the presence of 1613
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Fig. 2 a Subsystem categories and features distribution of the Verminephrobacter eiseniae msu genome based on the RAST annotation server. b
Comparison of RAST functional features between Verminephrobacter eiseniae msu and Verminephrobacter eiseniae EFO1-2

Subsystem Feature Counts
Cofactors, Vitamins, Prosthetic Groups, Pigments (164)
Cell wall and Capsule (30)
Virulence, Disease and Defense (37)
Potassium metabolism (3)
Photosynthesis (0)
Miscellaneous (52)
Phages, Prophages, Transposable elements, Plasmids (0)
Membrane Transport (141)
Iron acquisition and metabolism (12)
RNA Metabolism (60)
Nucleosides and Nucleotides (109)
Protein Metabolism (167)
Cell Division and Cell Cycle (0)
Motility and Chemotaxis (18)
Regulation and Cell signaling (39)
Secondary Metabolism (5)
DNA Metabolism (85)
Fatty Acids, Lipids, and Isoprenoids (183)
Nitrogen Metabolism (23)
Dormancy and Sporulation (1)
Respiration (115)
Stress Response (55)
Metabolism of Aromatic Compounds (65)
Amino Acids and Derivatives (500)
Sulfur Metabolism (18)
Phosphorus Metabolism (23)
Carbohydrates (389)

FEEE

OVerminephrobacter eiseniae msu

total transposons, consisting of 481 DNA transposons
and 1132 retrotransposons. Of these 1132 retrotran-
sposons, a total of 698 LINEs, 433 LTRs, and 1 SINEs
were identified in the genome of V. eiseniae msu
(Table S5A). Besides, the ISfinder tool using the
ISsaga pipeline detected 34 ORFs associated with 14
insertion sequence (IS) families. Among the predicted
IS families, ISL3, IS630, and IS21 family transposase
were dominant within the genome dataset (Table
S5B). The graphical circular genome map of V.

eiseniae msu along with their genome annotation fea-
tures is represented in Fig. 3.

Function and pathway analysis of V. eiseniae msu protein-
coding genes

We have used the AUGUSTUS-predicted genes for
functional and pathway analysis of the species. The non-
coding RNAs, cis-regulatory elements, and other self-
splicing RNAs present in V. eiseniaze msu genome are
listed in Table S6. The genome annotation comparison
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between V. eiseniae EF01-2 and V. eiseniae msu strains
was demonstrated in Table S7. Out of the total 3809
AUGUSTUS-predicted genes, 3805 genes showed
BLAST annotation hits to their homologous sequences
in the NCBI nr database (Fig. 4a). The evolutionarily
conserved domains, functional sites, and motif signa-
tures associated with the translated protein sequences of
V. eiseniaze msu were annotated against the InterPro
domain database using the InterProScan plug-in of
BLAST2GO. A total of 3426 V. eiseniae msu protein se-
quences were successfully annotated against the InterPro
database and subsequently categorized into 1184
domains. The top 30 InterPro domains/families obtained
for the annotated V. eiseniae msu proteins were summa-
rized in Fig. 4b. The domain distribution data denoted
that the “P-loop containing nucleoside triphosphate
hydrolase” (IPR027417) was the most highly represented
domain with 280 protein sequences followed by “Metl-
like superfamily” (IPR035906) (141 sequences),
“NAD(P)-binding domain superfamily” (IPR036291) (125
sequences), and “winged helix-like DNA-binding domain
superfamily” (IPR036388) (124 sequences). The P-loop
NTPase is a prevalent domain, characterized by the
presence of 2 signature motifs called Walker A and
Walker B, which binds to the NTPs and Mg2+ cation,

respectively (Walker et al. 1982). The domain assists in
energy production by NTP hydrolysis and acts as a
substrate for nucleotide binding (Ponesakki et al. 2017).
The P-loop containing nucleoside triphosphate hydro-
lase superfamily proteins play a crucial role in determin-
ing the host specificity of the endophyte Streptomyces
scabrisporus NF3 during symbiosis (Ceapa et al. 2018).
Besides, the transcriptome analysis of the Cardinium
strain cEperl, in its host parasitic wasps, Encarsia suzan-
nae demonstrated the upregulation of the P-loop
NTPase domain-containing gene CAHE_0544 upregu-
lated within the male insects (Mann et al. 2017). The V.
eiseniae msu protein dataset associated with P-loop con-
taining nucleoside triphosphate hydrolase family denoted
the presence of AAA family ATPase, ABC transporters,
ATP-binding cassette domain-containing proteins, and
DEAD/DEAH box helicase. Notably, the ABC trans-
porters (ATP-binding proteins) play a major role in
importing essential nutrients and exporting toxic sub-
stances (Davidson et al. 2008). Besides, the proteins
couple the energy of ATP hydrolysis to facilitate the
essential biological phenomena like DNA repair (Goosen
and Moolenaar 2001) and translation elongation
(Chakraburtty 2001). Previous reports have also sug-
gested that the eukaryotes probably acquire class 1 and
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Fig. 4 a The data distribution summary generated from BLAST2GO annotation represents the BLAST hits, mapped sequences, Gene Ontology-
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class 2 ABC transporters from their symbiotic bacterial GO terms, and among them, 2780 gene sequences were
systems (Davidson et al. 2008). annotated to a total of 1414 GO terms. Of these anno-

The Gene Ontology (GO) annotation of V. eiseniae  tated GO terms, 522 GO terms belong to the biological
msu protein-coding genes was performed through the process (BP), 824 GO terms belong to the molecular
mapping and annotation steps of BLAST2GO. Out of function (MF), and 68 GO terms belong to the cellular
the 3723 V. eiseniae msu genes with nr BLAST hits, a  component (CC). The GO distribution of the function-
total of 2784 genes were mapped with their associated ally annotated protein-coding genes (Fig. 4c) denoted
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that within the biological process, the dominant subcat-
egories are “oxidation-reduction process” (168 genes),
“transmembrane transport” (88 genes), and “phosphoryl-
ation” (71 genes); among the molecular function, most
of the genes were assigned to the subcategories like
“ATP binding” (356 genes), “DNA binding” (116 genes),
and “transferase activity” (98 genes); and within the cel-
lular component, the most highly represented GO terms
were “cytoplasm” (187 genes), “integral component of
membrane” (144 genes), and “plasma membrane” (110
genes).

The Clusters of Orthologous Groups (COGs) database
allows the prediction and classifications of the function
more accurately and reliably based on the orthologous
relation of the gene products. The COG analysis data of
the V. eiseniae msu genome dataset obtained from the
EggNog analysis denoted that a total of 3381 genes were
assigned to 20 functional categories. Among the ob-
tained functional groups, the cluster for “function un-
known” (596 genes) constitutes the largest functional
group (Figure S4). Among the other functional groups,
the clusters for “amino acid transport and metabolism”
(403 genes), “inorganic ion transport and metabolism”
(355 genes), “energy production and conversion” (341
genes), and “transcription” (268 genes) were the highly
represented categories. The dominance of amino acid
transport and metabolism in the orthologous group
dataset indicates the role of the bacteria in supporting
the nitrogen recycling process of the host worm
(Kjeldsen et al. 2012; Schramm et al. 2003). The RAST
genome annotation data of V. eiseniaze msu suggested
that 20 genes of the bacterial strain are associated with
ammonia assimilation including the proteins like glu-
tamate synthase, glutamine synthetase, ammonium
transporter, glutamate-ammonia-ligase adenylyltransfer-
ase, and [protein-PII] uridylyltransferase. The ammonia
assimilation-related genes may play a key role in the ni-
trogen recycling process (Ankrah et al. 2017; Macdonald
et al. 2012). Besides, we also observed the presence of
denitrification-specific enzymes like nitrate reductase
(EC 1.7.99.4) and nitrite reductase (EC 1.7.1.4), which
are involved in converting the nitrates into gaseous
nitrogen (Moreno-Vividn et al. 1999; Rinaldo and
Cutruzzola 2007; Tiso and Schechter 2015).

A total of 1796 genes were assigned to 39 KEGG path-
ways (Fig. 4d). Among these retrieved pathways, carbo-
hydrate metabolism (290 genes), amino acid metabolism
(252 genes), membrane transport (154 genes), and en-
ergy metabolism (138 genes) were the most dominant
KEGG pathways observed in the genome dataset of V.
eiseniae msu. The overall KEGG pathway analysis data
suggested that most of the annotated V. eiseniae msu
genes were assigned to the pathways associated with me-
tabolism category (1113 genes), while a few genes were
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observed to be mapped with the pathways related to
human diseases (113 genes) and organismal systems
(46 genes).

Enrichment analysis of functional GO terms

The enrichment analysis of the Gene Ontology terms
associated with the annotated V. eiseniae msu protein-
coding genes in comparison with the Verminephrobacter
eiseniae EF01-2 genome dataset was performed by using
Fisher’s two-tailed test with corrected P value <0.05.
Figure 5 denoted all the functionally enriched GO terms
associated with the genome of V. eiseniae msu. The GO
enrichment data denoted that “intracellular” (GO:
0005622) and “carboxylic acid metabolic process” (GO:
0019752), “acyl-CoA dehydrogenase activity” (GO:
0003995), and “carbohydrate binding” (GO:0030246)
were the most enriched GO terms in the annotated
genome dataset of V. eiseniae msu. In contrast, the GO
terms like “DNA binding” (GO:0003677), “electron
transport chain” (GO:0022900), and “endonuclease activ-
ity” (GO:0004519) were found to be enriched in the gen-
ome of Verminephrobacter eiseniae EF01-2. The ability
to metabolize carboxylic acids helps Verminephrobacter
to assimilate carboxylic acids present in the nephridial
excretion (Rich et al. 2015). The enzyme having acetyl-
CoA dehydrogenase activity is used in the metabolism of
fatty acids. The acyl CoA dehydrogenase affects the first
step of B-oxidation of fatty acids (Kurtz et al. 1998). The
carbon content obtained through this fatty acid metabol-
ism helps in the growth of Verminephrobacter.

Identification of symbiosis-associated genes in V. eiseniae
msu gene pool
The symbiosis-associated genes of V. eiseniae msu were
screened by comparing the bacterium genome dataset
with 2834 symbiotic protein sequences present in the
Symbiosis database of the GIPSy software. The BLAST
search identified a total of 586 symbiotic genes in the V.
eiseniae msu genome (Table S8). The bioluminescent
bacteria Vibrio fischeri exclusively produce the enzyme
1-acyl-sn-glycerol-3-phosphate  acyltransferase during
their symbiotic relationship with Euprymna tasmanica
which plays a major role in metabolism (Jones and
Nishiguchi 2006). The same gene was also observed in
the symbiotic gene pool of V. eiseniae msu. Besides, the
bacterial strain contains ABC transporter ATP-binding
protein which is shown to play a role in releasing cell
signaling molecules in legumes—Rhizobium symbiosis
(Sugiyama et al. 2007). Similarly, the gene for NADP-
dependent malic enzyme, inevitable in nitrogen fixation
by symbiotic Rhizobium meliloti (Driscoll and Finan
1993), was also observed in V. eisenize msu genome.
The KEGG metabolic pathway annotation of the iden-
tified symbiotic genes suggested that most of the genes
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were assigned to the pathway carbohydrate metabolism
followed by amino acid and energy metabolism (File
S3A, B). The carbohydrates like mannose, fucose, and
galactose are present in the glycosylated surfaces of the
ampullar epithelium of the host (worm). The symbionts
utilize the carbohydrates and sugar residues from the
host surface glycans as a potential source of energy for
their growth (Pinel et al. 2008; Sonnenburg et al. 2005).
Simultaneously, it was observed that the two isolates of
Verminephrobacter aporrectodeae Atd" and Ac9' and
Verminephrobacter eiseniae utilize a broad range of
amino acids like alanine, aspartate, and glutamate; sugars
like fucose, galactose, glucose, and mannose; and several
fatty acids to grow aerobically. The sugar resources
present in the earthworm cocoon provides the energy
required for the vertical transmission of the symbiont
from one host generation to another (Lund et al. 2012).
Besides, the symbiont has a beneficial effect on
earthworm reproduction as it supplies the essential vita-
mins and cofactors to the host cocoons and compensates
for their nutrient deficiency (Lund et al. 2014). The
functional analysis of the identified V. eisenize msu sym-
biotic genes demonstrated that the oxidation-reduction
process, ATP binding, ATPase activity, and integral
components of the membrane were the dominant func-
tional categories within the gene pool (File S3C).

Genome sequence alignment, comparison of orthologous
gene clusters, and phylogenomic analysis

The RAST annotation of the V. eiseniae msu genome
denoted the list of 30 closest neighbors of the bacterial
species (Table S9). According to the RAST genome
sequence comparison data, the top 5 closest neighboring
species for V. eiseniae msu were identified as Vermine-
phrobacter eiseniae EF01-2 (score 549), Alicycliphilus
denitrificans K601 (score 506), Acidovorax sp. JS42
(score 506), Delftia acidovorans SPH-1 (score 503), and
Rhodoferax ferrireducens DSM 15236 (score 487). The
Mauve multiple genome alignment tool was used to
align the genome sequence of V. eisenize msu to its
closest proteobacterial strains Alicycliphilus denitrificans
K601 (NC_015422), Delftia acidovorans SPH-1 (NC_
010002), Rhodoferax ferrireducens T118 (NC_007908),
Verminephrobacter aporrectodeae subsp. tuberculatae
strain At4 (AFAL00000000), and Verminephrobacter
eiseniae EF01-2 (NC_008786). The Mauve alignment
generated 84, 123, 515, 478, and 771 locally collinear
blocks (LCBs) between the genomes of A. denitrificans
K601-V. eiseniae msu, D. acidovorans SPH-1-V. eiseniae
msu, R. ferrireducens T118-V. eiseniae msu, V. aporrec-
todeae At4(T)-V. eiseniae msu, and V. eiseniae EF01-2
and V. eiseniae msu with minimum LCB weight of 1033,
1546, 198, 497, and 960, respectively (Fig. 6a). The
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variant analysis demonstrated 1966, 2074, 1659, and
1434 InDels and structural variants between the
genomes of our V. eiseniae msu strain and its closest
proteobacteria A. denitrificans K601 (NC_015422), D.
acidovorans SPH-1 (NC_010002), R. ferrireducens T118
(NC_007908), and V. aporrectodeae Atd (T)
(AFAL00000000), respectively (Table S10A-D). Simul-
taneously, the comparison of the orthologous gene
clusters across the proteome of these selected

proteobacterial species was carried out by using the
OrthoVenn web tool. A total of 20,497 gene clusters
were obtained from OrthoVenn analysis, and among
them, 3395, 3598, 2749, 2752, 4089, and 3914 clusters
belong to the species A. denitrificans K601, D. acidovor-
ans SPH-1, R ferrireducens T118, V. aporrectodeae
At4(T), V. eiseniae EF01-2, and V. eiseniae msu, respect-
ively (Fig. 6b). A 6-way Edwards’ Venn diagram data
denoted that among the identified clusters, 1220 gene
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clusters were commonly shared by all the 5 species.
Besides, 421, 116, 112, 56, and 8 gene clusters were
found to be annotated between V. aporrectodeae At4(T)-
V. eiseniae EF01-2-V. eiseniae msu, A. denitrificans-V.
eiseniae EF01-2-V. eiseniae msu, D. acidovorans-V.
eiseniae EF01-2-V. eiseniae msu, R. ferrireducens-V.
eiseniae EF01-2-V. eiseniae msu, and A. denitrificans- D.
acidovorans-V. eiseniae msu, respectively (Fig. 6b). The
phylogenomic analysis based on the genome sequence
comparison of these proteobacteria was performed by
using the REALPHY phylogeny builder web tool. A max-
imum likelihood phylogenomic tree data constructed by
the PhyML server denoted a strong evolutionary rela-
tionship between the genome of V. eiseniaze msu and V.
eiseniae EF01-2 and grouped them as a monophyletic
clade (Fig. 6¢).

To obtain the pan and core genome information, the
homologous gene families of the abovementioned 6 bac-
terial strains were calculated by using the BDBH,
OMCL, and COG clustering strategies with minimum
pairwise alignment coverage of 75%. The data denoted
the presence of 15,424 COG clusters, 15,034 OMCL
clusters, and 808 BDBH clusters (File S4A). Among
them, 738 clusters were found to be a consensus be-
tween the 3 algorithms, and 13,506 clusters were com-
mon between the COG and OMCL algorithms. The
BDBH strategy was used to estimate the pan and core
genome sizes of the strains. We observed the fitted
curves for both the pan and core genomes with residual
standard errors of 620.08 and 366.03, respectively (File
S4B, C). The fitted values used to estimate the pan and
core genome sizes were given in File S4E and F. Besides,
the software portioned the 13,506 pan-genome matrix
clusters (13,506) common between the COG and OMCL
into core, soft-core, shell, and cloud compartments.
Among these 13,506 gene clusters, 761, 1375, 1255, and
10,876 clusters represented the core (genes conserved in
all the genomes considered), soft-core (genes conserved
in 95% of the genomes considered), shell (moderately
conserved genes present in 3—4 genomes in our study),
and cloud (rare genes present in <2 genomes in our
study) genomes, respectively (File S4D). The core gene
clusters conserved among the 6 strains were listed in
Table S11. The comparison of protein-coding genes be-
tween V. eiseniae msu and V. eiseniae EF01-2 identified
7 V. eiseniae msu-specific genes missing in the genome
dataset of V. eiseniae EF01-2 strain (File S4G). Among
the identified 7 genes, we observed DNA damage-
inducible protein D, IS5 family transposase, chromo-
some partitioning protein ParB, and 4 other hypothetical
proteins. The V. eiseniae EF01-2 genome exhibited the
presence of 1S4 family transposase (Veis_4381; https://
www.uniprot.org/uniprot/A1WR27) whereas the pres-
ence of IS5 family transposase is unknown. In contrast,
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the genome dataset of V. eiseniae msu demonstrated
both IS4 and IS5 family transposase homologs. The
transposases play a pivotal role in maintaining the
genome plasticity and host adaptation of the bacteria
(Vigil-Stenman et al. 2017). In extracellular luminal sym-
bionts, the expansion of the transposon elements leads
to their genome reduction (Hendry et al. 2018). Simul-
taneously, the previous study has highlighted the ability
of the Verminephrobacter bacteria to incorporate the
free DNA from environmental sources and enable its
acquisition within the host worms. The ability to uptake
the free DNA from the environment may serve as a
potential source of nutrition and facilitate the DNA re-
pair of the symbiont bacteria to maintain their genome
stability (Davidson et al. 2014). The DinD (DNA
damage-inducible protein D) gene plays a major role in
recombinational DNA repair by modulating the Recom-
binase A (RecA) gene activity (Uranga et al. 2011).
Notably, the RecA gene was also identified in the gen-
ome dataset of V. eiseniae msu.

The genomic and pathogenic island prediction using
the GIPSy software identified a total of 9 genomic
islands and 12 pathogenic islands throughout the
concatenated genome of V. eiseniae msu. Among the
identified pathogenic islands, pathogenic island 7 exhib-
ited 55% virulence factors and both pathogenic islands 8
and 11 exhibited 53% virulence factors (Table S12A). Be-
sides, the annotation of the V. eiseniae msu protein-
coding genes against the Virulence Factor Database
(VFDB) exhibited a total of 189 virulence factors having
a sequence homology of 60% and above with their
homologs in the database (Table S12B). Among the an-
notated virulence factors, the PilB gene codes for the
traffic NTPase require for the assembly of the type IV
pili (Davidson et al. 2014). The type IV pili play a regula-
tory role in colonizing the nephridia of the nascent
earthworms and assist in the incorporation of the for-
eign genes within the earthworm egg capsules through
natural transformation (Davidson et al. 2014; Dulla et al.
2012). As the virulence activity and pathogenicity of the
Verminephrobacter species were not investigated to a
significant extent, the pathogenic islands and the viru-
lence factors demonstrated in our study can be utilized
further to explore the pathogenic nature of the strain
and interpret their association in the symbiotic relation-
ship between the bacteria and the worm. Besides, we
have identified 25 potential antimicrobial resistance
genes in the genome dataset of V. eiseniae msu (Table
S13). Lund et al. 2014, in their study, demonstrated that
the Verminephrobacter symbionts have a beneficial effect
on the host worm reproduction as it protects the devel-
oping embryos from the pathogens (Lund et al. 2014).
But the antimicrobial properties of the bacteria are yet

to be explored. In this scenario, the annotated
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antimicrobial resistance genes identified in the V. eise-
niae msu can be explored further to investigate the anti-
microbial properties of the strain and interpret their
impact on the reproduction of the host.

Bacteria were reported to supplement host organisms
with a number of metabolites. Some of the bacteria
living in the intestine of humans provide short-chain
fatty acids like propionate, pyruvate, and acetate, and vi-
tamins like thiamine, vitamin B2, folate, biotin, ribofla-
vin, pantothenic acid, and vitamin K (LeBlanc et al.
2017). The gene pool of V. eiseniae msu also shows that
the organism has the ability to produce vitamin B,,
thiamine, biotin, propionate, pyruvate, folate, and panto-
thenate. In zebrafish, bacteria depleted embryos resulted
in abnormal neurobehavioral development (Phelps et al.
2017). This study triggers a thought of the possibility of
bacterial symbiosis in vertebrates. The virulent genes of
Verminephrobacter and Mpycobacterium are closely re-
lated. To find a functional correlation, the property of
Verminephrobacter and Mycobacterium was analyzed
and found to both take about 15-20 days to form a col-
ony in vitro (Pinel et al. 2008). Several genes like mcel
(mycobacterial cell entry protein) and phthiocerol syn-
thesis polyketide synthase type I (ppsA and ppsB), which
are associated with the virulence property of the myco-
bacteria, are also involved in their slow growth (Beste
et al. 2009). Lewin et al. 2005 demonstrated all the
highly pathogenic Mycobacterium species belong to the
risk group 3 exhibit slow-growing property (Lewin and
Sharbati-Tehrani 2005). It indicates a strong connection
between the pathogenicity and the slow growth of the
bacteria. Hence, the slow-growing property is probably
due to the 18 Mycobacterium virulence operon homo-
logs listed in Table S14. Among them, 4 genes are com-
ponents of the ribosome, 4 genes are associated with
NAD and NADP biosynthesis, and the products of 4
genes are components of the transcription machinery.
The ribosome biosynthesis, NAD and NADP biosyn-
thesis, and transcription-specific genes were previously
connected with the slow growth rate of prokaryotic or-
ganisms like bacteria and yeast (Esquerre et al. 2013;
Garcia-Martinez et al. 2015; St John and Goldberg 1978;
Szenk et al. 2017). The Mycobacterium is a well-known
intracellular pathogen, whereas the Verminephrobacter
acts as an extracellular symbiont. The slow growth also
might be the reason for the successful symbiotic associ-
ation as seen in squids— Vibrio fischeri and alfalfa-Rhizo-
bium meliloti symbiosis wherein the bacterial doubling
times were 5 h and 11 h, respectively (Gage et al. 1996;
Lee and Ruby 1994). The earthworm provides the nitro-
gen source and shelter for the bacteria. However, the
involvement of the host worm in supplying the carbohy-
drate source to the bacterial strain is still unknown. As
described earlier, the genome of V. eiseniaze msu
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contains glutamate and glutamine biosynthesis-specific
enzymes, involved in ammonia assimilation. Besides, the
RAST data also denoted the presence of alanine
biosynthesis-specific enzymes and proteins associated
with the urea cycle like urea carboxylase, urea ABC
transporter, and several urease accessory proteins. Be-
sides, the KEGG pathway annotation data demonstrated
that among the 290 carbohydrate metabolism-specific
genes, 29 genes were associated with glucose metabol-
ism, 14 genes were assigned to fructose and mannose
metabolism, and 11 genes were associated with galactose
metabolism. The amino acids like glutamate, glutamine,
alanine, and nitrogenous compounds like ammonia and
urea were reported as the potential nitrogen sources,
whereas the sugars like glucose, galactose, fructose, and
mannose were the potential carbon sources required for
the growth of the Verminephrobacter bacteria (Pinel
et al. 2008).

Conclusion

Symbiotic organisms that support embryogenesis and
normal homeostasis of living organisms are important to
focus on the development of a better healthcare system.
Our study characterized the genome of a new Vermine-
phrobacter strain and highlighted the crucial genes and
pathways, playing a pivotal role during the symbiotic re-
lationship of the species with the host worm. The de-
tailed analysis of the bacterial genome shed light on the
mobilome, pathogenicity, virulence, and antimicrobial
resistance of the strain and investigated the pan and core
gene clusters with closest neighbors. In the Vermine-
phrobacter genus, the third whole genome reported here
will be helpful for understanding the symbiosis which
supports embryogenesis and overall fitness of the host
worms.
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